SOLUTIONS MANUAL FOR SELECTED
PROBLEMS IN
PROCESS SYSTEMS ANALYSIS AND
CONTROL
DONALD R. COUGHANOWR

COMPILED BY
M.N. GOPINATH BTech., (Chem)
CATCH ME AT gopinathchemical@gmail.com

Disclaimer: This work is just a compilation from various sources believed to be reliable and I am not responsible for any errors.
CONTENTS

PART 1: SOLUTIONS FOR SELECTED PROBLEMS

PART 2: LIST OF USEFUL BOOKS

PART 3: USEFUL WEBSITES
PART 1

1.1 Draw a block diagram for the control system generated when a human being steers an automobile.

1.2 From the given figure specify the devices
Solution:

Loop 110

- Sequential indicating controller. Y represents mathematical symbols. Emits signal to valve which controls the flow rate of B.

- Solenoidal valve. It operates on electric signal.

Loop 103

- Orifice meter, Measures flow rate.
- Flow transmitter. It converts flow to pneumatic signal of 20 to 100 Mpa.
- Removes the square root from signal and makes it linear. Input is pneumatic and output is electrical.

Loop 104

- Flow transmitter converts flow of A to a pneumatic signal of 20-100 Kpa.
- Pressure controller. It receives two electrical signals one from flow transmitter of loops 103 and 104. Maintain ratio of A and B in reaction chamber.
- IP converter, it converts standard electric signal to pneumatic signal.
- A control valve. Input is a standard pneumatic signal and controls the flow rate.
Inversion by partial fractions:

3.1(a) \(\frac{dx^2}{dt^2} + \frac{dx}{dt} + x = 1 \) \(x(0) = x'(0) = 0 \)

\[
L \left[\frac{dx^2}{dt^2} \right] = s^2 X(s) - sx(0) - x'(0)
\]

\[
L \left[\frac{dx}{dt} \right] = s \ X(s) - x(0)
\]

\(L(x) = X(s) \)
\[L\{1\} = \frac{1}{s} \]

\[s^2X(s) - sx(0) - x'(0) + sX(s) - x(0) + X(s) = \frac{1}{s} \]

\[= (s^2 + s + 1)X(s) = \frac{1}{s} \]

\[X(s) = \frac{1}{s(s^2 + s + 1)} \]

Now, applying partial fractions splitting, we get

\[X(s) = \frac{1}{s} - \frac{s + 1}{s^2 + s + 1} \]

\[X(s) = \frac{1}{s} - \frac{s + 1}{\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} - \frac{1}{2}\left(\frac{2}{\sqrt{3}}\right)\frac{\sqrt{3}}{2} \]

\[\frac{1}{s^2 + s + 1} \]

\[L^{-1}(X(s)) = 1 - e^{-\frac{1}{2}t} Cos\left(\frac{\sqrt{3}}{2}t\right) - \frac{1}{\sqrt{3}}e^{\frac{1}{2}t}\sin\left(\frac{\sqrt{3}}{2}t\right) \]

\[X(t) = 1 - e^{-\frac{1}{2}t}\left(Cos\left(\frac{\sqrt{3}}{2}t\right)\right) + \frac{1}{\sqrt{3}}\sin\left(\frac{\sqrt{3}}{2}t\right) \]

b) \[\frac{dx^2}{dt^2} + 2\frac{dx}{dt} + x = 1 \quad x(0) = x'(0) = 0 \]

when the initial conditions are zero, the transformed equation is

\[(s^2 + s + 1)X(s) = \frac{1}{s} \]
\[X(s) = \frac{1}{s(s^2 + s + 1)} \]

\[\frac{1}{s(s^2 + s + 1)} = A \frac{s}{s^2 + 2s + 1} + \frac{B s + C}{s^2 + 2s + 1} \]

1 = \(A(s^2 + 2s + 1) + Bs^2 + Cs \)

0 = \(A + B \) (by equating the coefficients of \(s^2 \))

0 = \(2A + C \) (by equating the coefficients of \(s \))

1 = \(A \) (by equating the coefficients of \(\text{const} \))

\[A + B = 0 \]

\[B = -1 \]

\[C = -2A \]

\[A = 1, B = -1, C = -2 \]

\[X(s) = \frac{1}{s} - \frac{s + 2}{s^2 + 2s + 1} \]

\[L^{-1}\{X(s)\} = L^{-1}\left\{ \frac{1}{s} - \frac{(s + 1) + 1}{(s + 1)^2} \right\} \]

\[\{X(t)\} = 1 - L^{-1}\left\{ \frac{1}{s + 1} + \frac{1}{(s + 1)^2} \right\} \]

\[\{X(t)\} = 1 - e^{-t}(1 + t) \]

3.1 \[C \frac{dx^2}{dt^2} + 3 \frac{dx}{dt} + x = 1 \quad x(0) = x'(0) = 0 \]

by Applying laplace transforms, we get

\[(s^2 + 3s + 1)X(s) = \frac{1}{s} \]

\[X(s) = \frac{1}{s(s^2 + 3s + 1)} \]
\[
X(s) = \frac{A}{s} + \frac{Bs + C}{s^2 + 3s + 1}
\]

1 = A(s^2 + 3s + 1) + Bs^2 + Cs
0 = A + B (by equating the coefficient of \(s^2 \))
0 = 3A + C (by equating the coefficients of \(s \))

1 = A (by equating the coefficients of \(\text{const} \))
A + B = 0
B = −1
C = −3A = −3
A = 1, B = −1, C = −3

\[
L^{-1}\{X(s)\} = L^{-1}\left\{\frac{1}{s} + \frac{s + 3}{s^2 + 3s + 1}\right\}
\]

\[
L^{-1}\{X(s)\} = L^{-1}\left\{\frac{1}{s} - \frac{s + 3}{\left(s + \frac{3}{2}\right)^2 - \left(\frac{\sqrt{5}}{2}\right)^2}\right\}
\]

\[
L^{-1}\{X(s)\} = L^{-1}\left\{\frac{1}{s} - \frac{s + \frac{3}{2}}{\left(s + \frac{3}{2}\right)^2 - \left(\frac{\sqrt{5}}{2}\right)^2} - \frac{3}{\frac{\sqrt{5}}{2}}\right\}
\]

\[
X(t) = 1 - e^{-\frac{3t}{\sqrt{5}}} \left(\cos\left(\frac{\sqrt{5}t}{2}\right) + \frac{3}{\sqrt{5}} \sinh\left(\frac{\sqrt{5}}{2}t\right)\right)
\]

3.2(a)
\[
\frac{d^4 x}{dt^4} + \frac{d^3 x}{dt^3} = \cos t; x(0) = x'(0) = x''(0) = x'''(0) = 0
\]
\[
x^{iv}(0) = 1
\]
Applying Laplace transforms, we get

\[s^4 X(s) - s^3 x(0) - s^2 x'(0) - sx''(0) - x'''(0) + s^3 X(s) - s^2 x(0) - sx'(0) - x''(0) = \frac{s}{s^2 + 1} \]

\[X(s)(s^4 + s^3) - (s + 1) = \frac{s}{s^2 + 1} \]

\[X(s) = \left(\frac{s}{s^2 + 1} + (s + 1) \right) / s^4 + s^3 \]

\[= \frac{s + s^3 + s + s^2 + 1}{s^3(s^2 + 1)(s + 1)} = \frac{s^3 + s^2 + 2s + 1}{s^3(s^2 + 1)(s + 1)} \]

\[\frac{s^3 + s^2 + 2s + 1}{s^3(s^2 + 1)(s + 1)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s^3} + \frac{D}{s + 1} + \frac{Es + F}{s^2 + 1} \]

\[s^3 + s^2 + 2s + 1 = As^2(s + 1)(s^2 + 1) + B(s + 1)(s^2 + 1) + c(s + 1)(s^2 + 1) + Ds^3(s^2 + 1) + (Es + F)s^3(s + 1) \]

A+B+E=0 equating the co-efficient of \(s^5 \).
A+B+E+F=0 equating the co-efficient of \(s^4 \).
A+B+C+D+F=0 equating the co-efficient of \(s^3 \).
A+B+C=0 equating the co-efficient of \(s^2 \).
B+C=2 equating the co-efficient of \(s \).
A+B+E=0 equating the co-efficient of \(s^2 \).
C=1 equating the co-efficient constant.

C=1
-B=-C+2=1
A=1-B-C=-1
D+F=0
E+F=0D+E=1
D-E=0
2D=1

A=-1; B=1; C=1
D=1/2; E=1/2; F = -1/2
\[L^{-1}\{s\} = L^{-1}\left\{ \frac{-1}{s} + \frac{1}{s^2} + \frac{1}{s^3} + \frac{1/2}{s+1} + \frac{1/2(s-1)}{s^2+1} \right\} \]

\[L^{-1}\{X(s)\} = L^{-1}\left\{ \frac{-1}{s} + \frac{1}{s^2} + \frac{1}{s^3} + \frac{1/2}{s+1} + \frac{1/2(s-1)}{s^2+1} \right\} \]

\[\{X(t)\} = -1 + t + \frac{t^2}{2} + \frac{1}{2} e^{-t} + \frac{1}{2} \cos t - \frac{1}{2} S \int \]

\[\frac{d^2q}{dt^2} + \frac{dq}{dt} = t^2 + 2t \quad q(0) = 4; q'(0) = -2 \]

Applying Laplace transforms, we get

\[s^2Q(s) - sq(0) - q'(0) + sQ((s) - q(0) = \frac{2}{s^3} + \frac{2}{s^2} \]

\[Q(s)(s^2 + s) - 4s + 2 - 4 = \frac{2}{s^2} \left(\frac{1}{s} + 1 \right) \]

\[Q(s) = \frac{2(s+1)}{s^3 + (4s + 2)} \]

\[Q(s) = \frac{2s + 2 + 4s^4 + 2s^3}{s^3(s + 1)} \]

\[Q(s) = 4 \left(\frac{1}{s+1} \right) + \frac{2}{s(s + 1)} + \frac{2 \times 3}{s^4(s + 1)} \]

\[L^{-1}(Q(s)) = q(t) = 4e^{-t} + 2(1 - e^{-t}) + \frac{1}{3} t^3 \]

Therefore \[q(t) = 2 + \frac{t^3}{3} + 2e^{-t} \]
3.3 a) \[
\frac{3s}{(s^2 + 1)(s^2 + 4)} = \frac{3s}{3} \left[\frac{1}{s^2 + 1} - \frac{1}{s^2 + 4} \right]
\]
\[
= \left[\frac{1}{s^2 + 1^2} - \frac{1}{s^2 + 2^2} \right]
\]

\[
L^{-1}\left[\frac{1}{s^2 + 1^2} - \frac{1}{s^2 + 2^2} \right] = \text{Cost} - \cos 2t
\]

b) \[
\frac{1}{s(s^2 - 2s + 5)} = \frac{1}{s((s - 1)^2 + 2^2)} = \frac{A}{s} + \frac{B + C}{s^2 - 2s + 5}
\]

A+B=0
-2A+C=0
5A=1
A=1/5 ; B=-1/5 ; C=2/5

We get
\[
X(s) = \frac{1}{5} \left[\frac{1}{s} + \frac{2 - s}{s^2 - 2s + 5} \right]
\]

Inverting, we get
\[
= \frac{1}{5} \left[1 + \frac{1}{2} e^{iS2t} - e^{iC2t} \right]
\]
\[
= \frac{1}{5} \left[1 + e^{i \left(\frac{1}{2} \sin 2t - \cos 2t \right)} \right]
\]

c) \[
\frac{3s^2 - s^2 - 3s + 2}{s^2 (s-1)^2} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s-1} + \frac{D}{(s-1)^2}
\]
\[As(s-1)^2 + B(s-1)^2 + Cs^2(s-1) +Ds^2 = 3s^3 - s^2 - 3s + 2 \]

\[A(s^3 - 2s + s) + B(s^2 - 2s + 1) + C(s^3 - s^2) + Ds^2 = 3s^3 - s^2 - 3s + 2 \]

\[A+C=3 \]
\[-2A+B-C+D=-1 \]
\[A-2B=-3 \]
\[B=2; \]
\[A=2(2)-3=1 \]
\[C=3-1=2 \]
\[D=2(1)-2+2-1=1 \]

We get \[X(s) = \frac{1}{s} + \frac{2}{s^2} + \frac{2}{s+1} + \frac{1}{(s-1)^2} \]

By inverse L.T

\[L^{-1}[X(t)] = 1 + 2t + 2e^t + te^t \]
\[L^{-1}[X(t)] = 1 + 2t + e^t(2 + t) \]

3.4 Expand the following function by partial fraction expansion. Do not evaluate co-efficient or invert expressions

\[X(s) = \frac{2}{(s+1)(s^2+1)^2(s+3)} \]

\[X(s) = \frac{A}{s+1} + \frac{Bs+C}{s^2+1} + \frac{Ds+E}{(s^2+1)^2} + \frac{F}{s+3} \]

\[= A(s^2+1)^2(s+3) + (Bs+C)(s+1)(s+3)(s^2+1) + (Ds+E)(s+1)(s+3) + F(s+1)(s^2+1)^2 \]

\[= A(s^4 + 2s^2 + 1)(s+3) + (Bs+C)(s^2 + 4s + 3)(s^2+1) + (Ds+E)(s^2 + 4s + 3) + F(s+1)(s^2 + 4s + 1) \]
\[s^5 (A + B + F) + s^4 (3A + C + 4B + F) + s^3 (2A + B + 4C + 3B) + s^2 (6A + C + 4B + 3C) + s(A + 4C + 3B + 4E + F) + 3A + 3AC + 3E + F = 2 \]

A+B+F=0
-3A+C+4B+F=0
2A+B+4C+3B=0
6A+C+4B+3C=0
A+4C+3B+3D+4E+F=0
3A+3C+3E+F=2

by solving above 6 equations, we can get the values of A,B,C,D,E and F.

\[X(s) = \frac{1}{s^3(s + 1)(s + 1)} (s + 3)^3. \]

\[X(s) = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s^3} + \frac{D}{s + 1} + \frac{E}{s + 2} + \frac{F}{s + 3} + \frac{G}{(s + 3)^2} + \frac{H}{(s + 3)^3} \]

by comparing powers of s we can evaluate A,B,C,D,E,F,G and H.

c) \[X(s) = \frac{1}{s(s + 2)(s + 3)(s + 4)} \]

\[X(s) = \frac{A}{s + 1} + \frac{B}{s + 2} + \frac{C}{s + 3} + \frac{D}{s + 4} \]

by comparing powers of s we can evaluate A,B,C,D

3.5 a) \[X(s) = \frac{1}{s(s + 1)(0.5s + 1)} \]

Let \[\frac{1}{s(s + 1)(0.5s + 1)} = \frac{A}{s} + \frac{B}{s + 1} + \frac{C}{(0.5s + 1)} \]

\[= A \left(\frac{s^2}{2} + \frac{3s}{2} + 1 \right) + B \left(\frac{s^2}{2} + s \right) + C(s^2 + s) = 1 \]

A=1

\[\frac{A}{2} + \frac{B}{2} + C = 0 = \frac{B}{2} + C = -\frac{1}{2} \]

\[\frac{3A}{2} + B + C = 0 = B + C = -\frac{3}{2} \]
\[B/2 = 1/2 \quad \ast -3/2 = -1; \]
\[B = -2; \]
\[C = -3/2 + 2 = 1/2 \]

\[X(s) = \frac{1}{s} - \frac{2}{s+1} + \frac{1}{2} \left(\frac{1}{0.5s + 1} \right) \]

\[= L^{-1} \left(X(s) \right) = x(t) = 1 - 2e^{-t} + e^{-2t} \]

\[b) \quad \frac{dx}{dt} + 2x = 2; \quad x(0) = 0 \]

Applying Laplace transforms

\[sX(s) - x(0) + 2X(s) = \frac{2}{s} \]

\[L^{-1}(X(s)) = \frac{2}{s(s + 2)} \]

\[L^{-1}(X(s)) = 2L^{-1} \left[\frac{2}{s(s + 2)} \right] \]

\[= L^{-1}(X(s)) = 2L^{-1} \left[\frac{1/2}{s} - \frac{1/2}{s + 2} \right] \]

\[= 1 - e^{-2t} \]

3.6 a) \[Y(s) = \frac{s + 1}{s^2 + 2s + 5} \]
\[Y(s) = \frac{s + 1}{s^2 + 2s + 5} \]
\[= \frac{s + 1}{(s + 1)^2 - 4} \]
\[= L^{-1}(Y(s)) = L^{-1}\left[\frac{s + 1}{(s + 1)^2 + 4} \right] \]

Using the table, we get
\[Y(t) = e^{-t}\cos 2t \]

b) \[Y(s) = \frac{s^2 + 2s}{s^4} \]
\[Y(s) = \frac{1}{s^2} + \frac{2}{s^3} \]
\[Y(t) = L^{-1}(Y(s)) = t + t^2 \]

c) \[Y(s) = \frac{2s}{(s-1)^3} \]
\[= \frac{2s - 2 + 2}{(s-1)^3} \]
\[= \frac{2}{(s-1)^2} + \frac{2}{(s-1)^3} \]
\[Y(t) = L^{-1}\left[\frac{2}{(s-1)^2} \right] + L^{-1}\left(\frac{2}{(s-1)^3} \right) \]
\[= 2(te^t + \frac{t^2}{2}e^t) = e^t(t^2 + 2t) \]
3.7a) \[Y(s) = \frac{1}{(s^2 + 1)} = \frac{As + B}{(s^2 + 1)} + \frac{Cs + D}{(s^2 + 1)} \]

thus \((As + B) + (Cs + D)(s^2 + 1) = 1\)

\[= Cs^3 + Ds^2 + (A + C)s + (B + D) = 1\]

C=0,D=0
Also \(A=0; B=1\)

\[Y(s) = \frac{1}{(s^2 + 1)^2} = \frac{1}{(s + i)^2(s - i)^2} = \frac{A}{(s + i)^2} + \frac{B}{(s + i)^2} + \frac{C}{(s - i)^2} + \frac{D}{(s - i)^2} \]

\[A(s + i)(s - i)^2 + B(s - i)^2 + C(s - i)(s + i)^2 + D(s + i)^2 = 1 \]

\((A + C)s^3 + (-Ai + B + Ci + D)s^2 + (A - 2Bi + C + 2Di) + (-Ai - B + Ci - D) = 1 \)

Thus, \(A+C=0\)
\(-Ai+B+Ci+2Di=0\); \(B=D\)
\(A-2Bi+C+2Di=0\)
\(-Ai-B+Ci-D=1\)

Also \(D=-Ci; B=-Ci,\) \(A=-C, C=-i/4\)

\(A=i/4\); \(B=-1/4; D=-1/4\)

\[Y(s) = \frac{i/4}{(s + i)} + \frac{-1/4}{(s + i)^2} + \frac{-i/4}{(s - i)^2} + \frac{-1/4}{(s - i)^2} \]

\[Y(t) = \frac{i/4}{(s + i)} - \frac{1/4}{(s + i)^2} - \frac{i/4}{(s - i)} + \frac{-1/4}{(s - i)^2} \]

\[Y(t) = \frac{i/4}{(s + i)} - \frac{1/4}{(s + i)^2} - \frac{i/4}{(s - i)} - \frac{1/4}{(s - i)^2} \]
\[Y(t) = \frac{i}{4}e^{-it} - 1/4e^{-it} - 1/4e^{it} - 1/4te^{it} \]

\[Y(t) = 1/4(i(e^{-it} - te^{-it}) - ie^{it} - te^{it}) \]

\[Y(t) = 1/4(i(\cos t - i\sin t) - t(\cos t - i\sin t) - i(\cos t + i\sin t) - t(\cos t + i\sin t)) \]

\[Y(t) = 1/4(2\sin t - 2t\cos t) \]

\[Y(t) = 1/2(Sin t - t\cos t) \]

\[f(s) = \frac{1}{s^2(s + 1)} \]

\[= f(s) = \frac{A}{s^2} + \frac{B}{s} + \frac{C}{s + 1} \]

\[= A(s + 1) + Bs(s + 1) + Cs^2 = 1 \]

Let \(s=0 \); \(A=1 \)

\(s=1; \ 2A+B+C=1 \)

\(s=-1; \ C=1 \)

\(B=-1 \)

\[f(s) = \frac{1}{s^2} + \frac{1}{s} + \frac{1}{s + 1} \]

\[f(t) = (t - 1) + e^{-t} \]

PROPERTIES OF TRANSFORMS

4.1 If a forcing function \(f(t) \) has the Laplace transforms

\[f(s) = \frac{1}{s} + e^{-s} - e^{2s} - \frac{e^{-3s}}{s} \]

\[= 1 - e^{-3s} + \frac{e^{-s} - e^{-2s}}{s^2} \]
$f(t) = L^{-1}\{f(s)\} = [u(t) - u(t - 3)] + [(t - 1)u(t - 1) - (t - 2)u(t - 2)]$

$= u(t) + (t - 1)u(t - 1) - (t - 2)u(t - 2) - u(t - 3)$

Graph the function $f(t)$

4.2 Solve the following equation for $y(t)$:

$$\int_0^t y(\tau)\,d\tau = \frac{dy(t)}{dt} \quad y(0) = 1$$

Taking Laplace transforms on both sides

$$L\left\{\int_0^t y(\tau)\,d\tau\right\} = L\left\{\frac{dy(t)}{dt}\right\}$$

$$\frac{1}{s}y(s) = s\cdot y(s) - y(0)$$
\[\frac{1}{s} \cdot y(s) = s \cdot y(s) - 1 \]

\[y(s) = \frac{s}{s^3 - 1} \]

\[y(t) = L^{-1}\{y(s)\} = L^{-1}\left\{ \frac{s}{s^3 - 1} \right\} \cosh(t) \]

4.3 Express the function given in figure given below the t-domain and the s-domain

This graph can be expressed as

\[= \{u(t - 1) - u(t - 5)\} + \{(t - 2)u(t - 2) - (t - 3)u(t - 3)\} + \{u(t - 5) - (t - 5)u(t - 5) + (t - 6)u(t - 6)\} \]

\[f(t) = u(t - 1) + (t - 2)u(t - 2) - (t - 2)u(t - 3) - (t - 5)u(t - 5) + (t - 6)u(t - 6) \]

\[f(s) = L\{f(t)\} = \frac{e^{-s}}{s} + \frac{e^{-2s}}{s^2} - \frac{e^{-3s}}{s^2} - \frac{e^{-3s}}{s^2} + \frac{e^{-6s}}{s^2} \]

\[= \frac{e^{-s} - e^{-3s}}{s} + \frac{e^{-2s} + e^{-6s} - e^{-3s} - e^{-5s}}{s^2} \]
4.4 Sketch the following functions:

\[f(t) = u(t) - 2u(t-1) + u(t-3) \]

\[f(t) = 3u(t) - 3u(t-1) + u(t-2) \]
4.5 The function $f(t)$ has the Laplace transform

$$f(S) = \frac{(1 - 2e^{-s} + e^{-2s})}{s^2}$$

obtain the function $f(t)$ and graph $f(t)$

$$f(s) = \frac{1 - 2e^{-s} + e^{-2s}}{s^2}$$

$$= \frac{1 - e^{-s}}{s^2} - \frac{e^{-s} - e^{-2s}}{s^2}$$

$$f(t) = L^{-1}\{f(s)\} = -(t-1)u(t-1) + tu(t) - [(t-1)u(t-1) - (t-2)u(t-2)]$$

$$= tu(t) - 2(t-1)u(t-1) + (t-2)u(t-2)$$

4.6 Determine $f(t)$ at $t = 1.5$ and at $t = 3$ for following function:

$$f(t) = 0.5u(t) - 0.5u(t-1) + (t - 3)u(t - 2)$$
At $t = 1.5$

\[f(t) = 0.5u(t) - 0.5u(t - 1) + (t - 3)u(t - 2) \]

\[f(1.5) = 0.5u(t) - 0.5u(t - 1) \]

\[f(1.5) = 0.5 - 0.5 = 0 \]

At $t = 3$

\[f(3) = 0.5 - 0.5 + (3 - 3) = 0 \]

RESPONSE OF A FIRST ORDER SYSTEMS

5.1 A thermometer having a time constant of 0.2 min is placed in a temperature bath and after the thermometer comes to equilibrium with the bath, the temperature of the bath is increased linearly with time at the rate of 1 deg C/min. What is the difference between the indicated temperature and bath temperature?

(a) 0.1 min

(b) 10. min

after the change in temperature begins.

(c) What is the maximum deviation between the indicated temperature and bath temperature and when does it occur?

(d) Plot the forcing function and the response on the same graph. After the long enough time buy how many minutes does the response lag the input.

Consider thermometer to be in equilibrium with temperature bath at temperature X_s

\[X(t) = X_s + (1^\circ / m)t, t > 0 \]

as it is given that the temperature varies linearly

\[X(t) - X_s = t \]

Let $X(t) = X(t) - X_s = t$
\[Y(s) = G(s)X(s) \]

\[Y(s) = \frac{1}{1 + \frac{\tau}{s}} \frac{1}{1 + \frac{\tau}{s}} \frac{A}{s} + \frac{B}{s} + \frac{C}{s^2} \]

\[A = \tau^2 \quad B = -\tau \quad C = 1 \]

\[Y(s) = \frac{\tau^2}{1 + \frac{\tau}{s}} - \frac{\tau}{s} + \frac{1}{s^2} \]

\[Y(t) = \tau e^{-t/\tau} - \tau + t \]

(a) the difference between the indicated temperature and bath temperature at \(t = 0.1 \) min = \(X(0.1) - Y(0.1) \)

\[= 0.1 - (0.2e^{-0.1/0.2} - 0.2 + 0.1) \text{ since } T = 0.2 \text{ given} \]

\[= 0.0787 \text{ deg C} \]

(b) \(t = 1.0 \) min

\[X(1) - Y(1) = 1 - (0.2e^{-1/0.2} - 0.2 + 1) = 0.1986 \]

(c) Deviation \(D = -Y(t) + X(t) \)

\[= -\tau e^{-t/T} + T = \tau (-e^{-t/T} + 1) \]

For maximum value \(\frac{dD}{dT} = \tau (-e^{-t/T} + (-1/T)) = 0 \)

\[-e^{-t/T} = 0 \]

as \(t \) tend to infinity

\[D = \tau (-e^{-t/T} + (-1/T)) = \tau = 0.2 \text{ deg C} \]

5.2 A mercury thermometer bulb in \(\frac{1}{2} \) in. long by 1/8 in diameter. The glass envelope is very thin. Calculate the time constant in water flowing at 10 ft/sec at a temperature of 100 deg F. In your solution, give a summary which includes

(a) Assumptions used.
(b) Source of data
(c) Results
\[T = \frac{mC_p}{hA} = \frac{(\rho AL)C_p}{h(A + \pi DL)} \]

Calculation of

\[\text{Nu}_d = \frac{hD}{K} = CR^m (Pr)^n \]

\[\text{Re}_d = \frac{Dv\rho}{\mu} = \frac{(1/8 \times 2.54 \times 10^{-2})(10 \times 0.3048)10^3}{10^{-3}} = 9677.4 \]

\[\text{Pr} = \frac{C_{\mu\mu}}{K} = 4.2 \text{ KJ/KgK} \]

Source data: Recently, Z hukauskas has given \(c, m, \xi, n \) values.

For \(\text{Re} = 967704 \)

\(C = 0.26 \) & \(m = 0.6 \)

\[\text{Nu}_D = \frac{hD}{K} = 0.193 \times (9677.4)^*(6.774X10^{-3}) = 130 \]

\(h = 25380 \)

5.3 Given a system with the transfer function \(\frac{Y(s)}{X(s)} = \frac{(T_1s+1)}{(T_2s+1)}. \) Find \(Y(t) \) if \(X(t) \) is a unit step function. If \(\frac{T_1}{T_2} = s. \) Sketch \(Y(t) \) Versus \(t/T_2. \) Show the numerical values of minimum, maximum and ultimate values that may occur during the transient. Check these using the initial value and final value theorems of chapter 4.

\[Y(s) = \frac{T_1s+1}{T_2s+1} \]

\[X(s) = \text{unit step function} = 1 \]

\[X(s) = 1/s \]
\[Y(s) = \frac{T_1s + 1}{s(T_2s + 1)} = \frac{A}{s} + \frac{B}{iT_2s} \]

\[A = 1 \quad B = T_1 - T_2 \]

\[Y(s) = \frac{1}{s} + \frac{T_1 - T_2}{1 + T_2s} \]

\[Y(t) = 1 + \frac{T_1 - T_2}{T_2} e^{-t/T_2} \]

If \(T_1/T_2 = s \) then

\[Y(t) = 1 + 4e^{-t/T_2} \]

Let \(t/T_2 = x \) then \(Y(t) = 1 + 4e^{-x} \)

Using the initial value theorem and final value theorem

\[\lim_{T \to 0} Y(T) = \lim_{s \to \infty} sY(s) \]

\[= \lim_{s \to \infty} \frac{T_1s + 1}{T_2s + 1} = \lim_{s \to \infty} \frac{T_1}{T_2} + \frac{1}{s}T_2 = T_1 = 5 \]

\[\lim_{T \to 0} Y(T) = \lim_{s \to \infty} sY(s) = \lim_{s \to 0} \frac{T_1s + 1}{T_2s + 1} = 1 \]

Figure:
5.4 A thermometer having first order dynamics with a time constant of 1 min is placed in a temperature bath at 100 deg F. After the thermometer reaches steady state, it is suddenly placed in bath at 100 deg F at \(t = 0 \) and left there for 1 min after which it is immediately returned to the bath at 100 deg F.

(a) draw a sketch showing the variation of the thermometer reading with time.

(b) calculate the thermometer reading at \(t = 0.5 \) min and at \(t = 2.0 \) min

\[
\frac{Y(s)}{X(s)} = \frac{1}{s+1} \quad (\tau = 1 \text{ min})
\]

\[
(s) = 10 \left[\frac{1 - e^{-s}}{s} \right]
\]
\[Y(s) = 10 \left[\frac{1 - e^{-t}}{s} \right] \]

\[Y(s) = 10 \left[\frac{1}{s(s+1)} - \frac{e^{-t}}{s(s+1)} \right] \]

\[Y(t) = 10(1 - e^{-t}) \quad t < 1 \]

\[Y(t) = 10\left((1 - e^{-t}) - (1 - e^{-(t-1)}) \right) \quad t \geq 1 \]

At \(t = 0.5 \) \(T = 103.93 \)

At \(t = 2 \) \(T = 102.325 \)

5.5 Repeat problem 5.4 if the thermometer is in 110 deg F for only 10 sec.

If thermometer is in 110 deg F bath for only 10 sec

\[T = 110 - 10e^{-t/60} \]
0 < t < 10 sec & \(T = 60 \) sec
\(T(t = 10 \text{ sec}) = 101.535 \)
\(T = 100 + 1.535e^{-(t-10)/60} \) \(t > 10 \text{ sec} \)
\(T(t=30\text{sec}) = 101.099 \) deg F
\(T(t=120\text{sec}) = 100.245 \) deg F

5.6 A mercury thermometer which has been on a table for some time, is registering the room temperature, \(758\) deg F. Suddenly, it is placed in a \(400\) deg F oil bath. The following data are obtained for response of the thermometer:

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Temperature, Deg F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>107</td>
</tr>
<tr>
<td>2.5</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>205</td>
</tr>
<tr>
<td>8</td>
<td>244</td>
</tr>
<tr>
<td>10</td>
<td>282</td>
</tr>
<tr>
<td>15</td>
<td>328</td>
</tr>
<tr>
<td>30</td>
<td>385</td>
</tr>
</tbody>
</table>

Give two independent estimates of the thermometer time constant.
\[
\frac{t}{\ln\left(\frac{325}{400-T}\right)}
\]

From the data, average of 9.647, 11.2, 9.788, 10.9, 9.87, 9.95, and 9.75 is 10.16 sec.

5.7 Rewrite the sinusoidal response of first order system (eq 5.24) in terms of a cosine wave. Re express the forcing function equation (eq 5.19) as a cosine wave and compute the phase difference between input and output cosine waves.

\[
Y(s) = \frac{1}{s^2 + \frac{1}{\tau}}(s) = \frac{A\omega}{s^2 + \omega^2} \frac{(1)}{s + \frac{1}{\tau}}
\]

splitting into partial fractions then converting to laplace transforms

\[
Y(t) = \frac{A\alpha\omega\tau}{\tau^2 \omega^2 + 1} e^{-\tau t} + \frac{A}{\sqrt{\tau^2 \omega^2 + 1}} \sin(\omega t + \phi)
\]

where \(\phi = \tan^{-1}(\omega \tau)\)

As \(t \to \infty\)

\[
Y(t)|_{s} = \frac{A}{\sqrt{\tau^2 \omega^2 + 1}} \sin(\omega t + \phi) = \frac{A}{\sqrt{\tau^2 \omega^2 + 1}} \cos(\omega t - \left(\frac{\pi}{2} - \phi\right))
\]

\[
Y(t) = A\sin(\omega t + \phi) = A\cos\left(\frac{\pi}{2} - \omega t\right)
\]

\[
Y(t) = A\cos\left(\omega t - \frac{\pi}{2}\right)
\]

The phase difference = \(\phi - \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = |\phi|\)
5.8 The mercury thermometer of problem 5.6 is allowed to come to equilibrium in the room temp at 75 deg F. Then it is immersed in a oil bath for a length of time less than 1 sec and quickly removed from the bath and re exposed to 75 deg F ambient condition. It may be estimated that the heat transfer coefficient to the thermometer in air is 1/5th that in oil bath. If 10 sec after the thermometer is removed from the bath it reads 98 Deg F. Estimate the length of time that the thermometer was in the bath.

\[t < 1 \text{ sec} \quad T_i = 400 - 325e^{-t/\tau} \]

Next it is removed and kept in 75 Deg F atmosphere

Heat transfer co-efficient in air = 1/5 heat transfer co-efficient in oil

\[h_{air} = \frac{1}{5} h_{oil} \]

\[\tau = \frac{mC}{hA} \quad \tau_{oil} = 10 \text{ sec} \]
\[\tau_{air} = 50 \text{ sec} \]

\[T_f = 75 + (T_i - 75)e^{-t/50} \]

\[T_f = \text{Final Temp} = 98 \text{ deg C} \]

\[98 = 75 + (325 - 325e^{-t/10})e^{-10/50} \]

\[e^{-t/10} = 0.91356 \]

\[t_1 = 0.904 \text{ sec.} \]

5.9 A thermometer having a time constant of 1 min is initially at 50 deg C. It is immersed in a bath maintained at 100 deg C at \(t = 0 \). Determine the temperature reading at 1.2 min.

\[\tau = 1 \text{ min} \text{ for a thermometer initially at 50 deg C.} \]

Next it is immersed in bath maintained at 100 deg C at \(t = 0 \)

At \(t = 1.2 \)
\[Y(t) = A(1 - e^{-t/\tau}) \]

\[Y(1.2) = 50(1 - e^{-1.2/1}) + 50 \]

\[Y(1.2) = 84.9 \text{ deg C} \]

5.10 In Problem No 5.9 if at, \(t = 1.5 \) min thermometer having a time constant of 1 minute is initially at 50 deg C. It is immersed in a bath maintained at 100 deg C at \(t = 0 \). Determine the temperature reading at \(t = 1.2 \) min.

At \(t = 1.5 \)

\[Y(1.5) = 88.843 \text{°C} \]

Max temperature indicated = 88.843 deg C

AT \(t = 20 \) min

\[T = 88.843 - 13.843(1 - e^{-18.8/1}) \]

\[T = 75 \text{ Deg C}. \]

5.11 A process of unknown transfer function is subjected to a unit impulse input. The output of the process is measured accurately and is found to be represented by the function \(Y(t) = t e^{-t} \). Determine the unit step response in this process.

\[X(s) = 1 \]

\[Y(t) = t e^{-t} \]

\[Y(s) = \frac{1}{(s+1)^2} \]

\[G(s) = \frac{Y(s)}{X(s)} = \frac{1}{(s+1)^2} \]

For determining unit step response

\[Y(s) = \frac{1}{(s+1)^2} \]
7.1 Determine the transfer function $H(s)/Q(s)$ for the liquid level shown in figure P7-7. Resistance R_1 and R_2 are linear. The flow rate from tank 3 is maintained constant at b by means of a pump; the flow rate from tank 3 is independent of head h. The tanks are non-interacting.

$$Y(s) = \frac{1}{(s+1)^2} = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{(s+1)^2}$$

$A = 1$ $B = -1$ $C = -1$

$$Y(s) = \frac{1}{s} - \frac{1}{s+1} - \frac{1}{(s+1)^2}$$

$$Y(t) = 1 - e^{-t} - te^{-t}$$

Response of first order system in series
Solution:

A balance on tank 1 gives

\[q - q_1 = A_1 \frac{dh_1}{dt} \]

where \(h_1 \) = height of the liquid level in tank 1

similarly balance on the tank 2 gives

\[q_1 - q_2 = A_2 \frac{dh_2}{dt} \]

and balance on tank 3 gives
\[q_2 - q_0 = A_3 \frac{dh}{dt} \]

Here \(q_1 = \frac{h_1}{R_1}, q_2 = \frac{h_2}{R_2}, q_0 = b \)

So we get

\[q - \frac{h_1}{R_1} = A_1 \frac{dh_1}{dt} \]

\[\frac{h_1}{R_1} - \frac{h_2}{R_2} = A_2 \frac{dh_2}{dt} \]

\[\frac{h_2}{R_2} - b = A_3 \frac{dh}{dt} \]

Writing the steady state equation

\[q_S - \frac{h_{1S}}{R_1} = A_1 \frac{dh_{1S}}{dt} = 0 \]

\[\frac{h_{1S}}{R_1} - \frac{h_{2S}}{R_2} = A_2 \frac{dh_{2S}}{dt} \]

\[\frac{h_{2S}}{R_2} - b = 0 \]

Subtracting and writing in terms of deviation

\[Q - \frac{H}{R_1} = A_1 \frac{dH_1}{dt} \]
\[\frac{H_1}{R_1} - \frac{H_2}{R_2} = A_1 \frac{dH_2}{dt} \]

\[\frac{H_2}{R_2} = A_3 \frac{dH}{dt} \]

where \(Q = q - q_S \)

\[H_1 = h_1 - h_{1S} \]

\[H_1 = h_2 - h_{2S} \]

\[H = h - h_S \]

Taking Laplace transforms

\[Q(s) - \frac{H_1(s)}{R_1} = A_1 s H_1(s) \tag{1} \]

\[\frac{H_1(s)}{R_1} - \frac{H_2(s)}{R_2} = A_2 s H_2(s) \tag{2} \]

\[\frac{H_2(s)}{R_2} = A_3 s H(s) \tag{3} \]

We have three equations and 4 unknowns \(Q(s), H(s), H_1(s) \) and \(H_2(s) \). So we can express one in terms of other.

From (3)

\[H_2(s) = \frac{H_2(s)}{R_1 A_3 s} \tag{4} \]
\[H_z(s) = \frac{R_z H_1(s)}{R_1 (\tau_z s + 1)} \text{ where } \tau_z = R_z A_z \quad (5) \]

From (1)

\[H_1(s) = \frac{R_1 Q(s)}{(\tau_1 s + 1)}, \quad \tau_1 = R_1 A_1 \quad (6) \]

Combining equation 4,5,6

\[H(s) = \frac{Q(s)}{(A_s s)(\tau_1 s + 1)(\tau_2 s + 1)} \]

\[\frac{H(s)}{Q(s)} = \frac{1}{(A_s s)(\tau_1 s + 1)(\tau_2 s + 1)} \]

Above equation can be written as

i.e, if non interacting first order system are there in series then there overall transfer function is equal to the product of the individual transfer function in series.

7.2 The mercury thermometer in chapter 5 was considered to have all its resistance in the convective film surrounding the bulb and all its capacitance in the mercury. A more detailed analysis would consider both the convective resistance surrounding the bulb and that between the bulb and mercury. In addition, the capacitance of the glass bulb would be included.

Let

\[A_i = \text{inside area of bulb for heat transfer to mercury.} \]
\[A_o = \text{outside area of bulb, for heat transfer from surrounding fluid.} \]
\[.m = \text{mass of the mercury in bulb.} \]
\[m_b = \text{mass of glass bulb.} \]
\[C = \text{heat capacitance of mercury.} \]
Cb = heat capacity of glass bulb.
\(.hi = \text{convective co-efficient between the bulb and the surrounding fluid.} \)
\(.ho = \text{convective co-efficient between bulb and surrounding fluid.} \)
T = temperature of mercury.
Tb = temperature of glass bulb.
Tf = temperature of surrounding fluid.

Determine the transfer function between Tf and T. What is the effect of bulb resistance and capacitance on the thermometer response? Note that the inclusion of the bulb results in a pair of interacting systems, which give an overall transfer function different from that of Eq (7.24)

Writing the energy balance for change in term of a bulb and mercury respectively

\[h_o A_o (T_f - T_b) - h_i A_i (T_b - T) = m_b C_b \frac{dT_b}{dt} \]
\[h_i A_i (T_b - T) - 0 = m C \frac{dT}{dt} \]

Writing the steady state equation

\[h_o A_o (T_f - T_b) - h_i A_i (T_b - T_s) = m_b C_b \frac{dT_b}{dt} = 0 \]
\[h_i A_i (T_b - T_s) = 0 \]
Where subscript \(s \) denoted values at steady subtracting and writing these equations in terms of deviation variables.

\[
h_0 A_0 (T_f - T_b) - h_i A_i (T_b - T_m) = m_b C_b \frac{dT_b}{dt}
\]

\[
h_i A_i (T_b - T_m) - 0 = m C \frac{dT_m}{dt}
\]

Here \(T_F = T_f - T_{IS} \)
\(T_B = T_b - T_{BS} \)
\(T_m = T - T_S \)

Taking laplace transforms

\[
h_0 A_0 (T_F(s) - T_B(s)) - h_i A_i (T_B(s) - T_m(s)) = m_b C_b T_B(s) \quad \text{(1)}
\]

And \(h_i A_i (T_B(s) - T_m(s)) = mC sT_B(s) \quad \text{(2)} \)

\[
= h_0 A_0 (T_f(s) - T_B(s)) - mC sT_m(s) = m_b C_b sT_B(s)
\]

From (2) we get

\[
T_B(s) = T_m(s) \left[\frac{mC}{h_i A_i} s + 1 \right] = T_m(s) (\tau_i s + 1)
\]

Where \(\tau_i = \frac{mC}{h_i A_i} \)

Putting it into (1)

\[
T_F(s) - T_m(s) \left[(\tau_i s + 1)(\tau_0 s + 1) + \frac{mC}{h_0 A_0} s \right] = 0
\]
\[T_f(s) = T_m(s) \left[(\tau_i s + 1)(\tau_o s + 1) + \frac{mC}{h_o A_o} s \right] \]

\[T_m(s) = \frac{1}{T_f(s)} \frac{1}{\tau_i \tau_o s^2 + (\tau_i + \tau_o + \frac{mC}{h_o A_o})s + 1} \]

\[T_m(s) = \frac{1}{T_f(s)} \frac{1}{\tau_i \tau_o s^2 + (\tau_i + \tau_o + \frac{mC}{h_o A_o})s + 1} \]

Or we can write

\[\frac{T(s)}{T_f(s)} = \frac{1}{\tau_i \tau_o s^2 + (\tau_i + \tau_o + \frac{mC}{h_o A_o})s + 1} \]

\[\tau_i = \frac{mC}{h_i A_i} \quad \text{and} \quad \tau_o = \frac{m_o C_o}{h_o A_o} \]

We see that a loading term \(mC/ h_o A_o \) is appearing in the transfer function.

The bulb resistance and capacitance is appear in \(\tau_o \) and it increases the delay i.e Transfer lag and response is slow down.

7.3 There are \(N \) storage tank of volume \(V \) Arranged so that when water is fed into the first tank into the second tank and so on. Each tank initially contains component A at some concentration \(C_0 \) and is equipped with a perfect stirrer. A time zero, a stream of zero concentration is fed into the first tank at volumetric rate \(q \). Find the resulting concentration in each tank as a function of time.

Solution:
. i^{th} tank balance

$qC_{i-1} - qC_i = V \frac{dC_i}{dt}$

$qC_{i-1} - qC_i = 0$

$C_{i-1} - C_i = V \frac{dC_i}{q dt}$

$\left(\tau = \frac{V}{q} \right)$

Taking laplace transformation

$C_{i-1}(s) - C_i(s) = \tau s C_i(s)$

$C_{i-1}(s) = (1 + \tau s) C_i(s)$

$\frac{C_i(s)}{C_{i-1}(s)} = \frac{1}{1 + \tau s}$

Similarly

$\frac{C_i(s)}{C_{0}(s)} = \frac{C_i(s)}{C_0(s)} \times \frac{C_1(s)}{C_1(s)} \times \cdots \times \frac{C_{i-1}(s)}{C_{i-2}(s)} \times \frac{C_i(s)}{C_i(s)} = \frac{1}{(1 + \tau s)^i}$
Or

\[\frac{C_N(s)}{Co(s)} = \frac{1}{(1+\tau s)^N} \]

\[C_N(s) = \frac{-C_0}{s(1+\tau s)^N} \]

\[C_N(s) = -C_0 \left[\frac{1}{s} - \frac{\tau}{(1+\tau s)^N} - \frac{\tau}{(1+\tau s)^{N-1}} - \frac{\tau}{1+\tau s} \right] \]

\[C_N(t) = -C_0 \left[1 - e^{-\frac{t}{\tau}} \left(\frac{t}{\tau} \right)^{N-1} \frac{1}{(N-1)!} - e^{-\frac{t}{\tau}} \left(\frac{t}{\tau} \right)^{N-2} \frac{1}{(N-2)!} - \frac{1}{\tau} + 1 \right] \]

7.4 (a) Find the transfer functions \(H_2/Q \) and \(H_3/Q \) for the three tank system shown in Fig P7-4 where \(H_1, H_3 \) and \(Q \) are deviation variables. Tank 1 and Tank 2 are interacting.

7.4(b) For a unit step change in \(q \) (i.e. \(Q = 1/s \)); determine \(H_3(0), H_3(\infty) \) and sketch \(H_3(t) \) vs \(t \).

Solution:

Writing heat balance equation for tank 1 and tank 2
\[q - q_1 = A_1 \frac{dh_1}{dt} \]

\[q_1 - q_2 = A_2 \frac{dh_2}{dt} \]

\[q_1 = \frac{h_1 - h_2}{R_1} \quad q_2 = \frac{h_2}{R_2} \]

Writing the steady state equation

\[q_s - q_{is} = 0 \]

\[q_{is} - q_{2s} = 0 \]

Writing the equations in terms of deviation variables

\[Q - Q_1 = A_1 \frac{dH_1}{dt} \]

\[Q_1 - Q_2 = A_2 \frac{dH_2}{dt} \]
\[Q_1 = \frac{H_1 - H_2}{R_1} \quad Q_2 = \frac{H_2}{R_2} \]

Taking laplace transforms

\[Q(s) - Q_1(s) = A_1 s H_1(s) \]

\[Q_1(s) - Q(s) = A_1 s H_2(s) \]

\[R_1 Q_1(s) = H_1(s) - H_2(s) \]

\[R_2 Q_2(s) = H_2(s) \]

Solving the above equations we get

\[\frac{H_2(s)}{Q(s)} = \frac{R_2}{\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2 + A_1 R_2) s + 1} \]

Here \(\tau_1 = R_1 A_1 \)

\(\tau_2 = R_2 A_2 \)

Now writing the balance for third tank

\[q_2 - q_3 = A_3 \frac{dh_3}{dt} \]

Steady state equation

\[q_{2s} - q_{3s} = 0 \]

\[q_3 = \frac{h_3}{R_3} \]

\[Q_2 - \frac{H_3}{R_3} = A_3 \frac{dh_3}{dt} \]
Taking laplace transforms

\[Q_2(s) - \frac{H_3(s)}{R_3} = A_3 s H(s) \]

\[Q_2(s) = \frac{H_3(s)}{R_3} (\tau_3 s + 1) \quad \text{where} \quad \tau_3 = R_3 A_3 \]

From equation 1,2,3,4 and 5 we got

\[\frac{Q_4(s)}{Q(s)} = \frac{1}{[\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2 + A_1 R_2) s + 1]} \]

Putting it in equation 6

\[\frac{H_3(s)}{Q(s)} = \frac{R_3}{[\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2 + A_1 R_2) s + 1]} \]

Putting the numerical values of \(R_1, R_2 \) and \(R_3 \) and \(A_1, A_2, A_3 \)

\[\frac{H_3(s)}{Q(s)} = \frac{4}{\left(4 s^2 + 6s + 1\right)\left(2s + 1\right)} \]

\[\frac{H_2(s)}{Q(s)} = \frac{2}{\left(4 s^2 + 6 s + 1\right)} \]

Solution (b)

\[Q(s) = \frac{1}{s} \]
\[H_3(s) = \frac{1}{s} \left[\frac{4}{4s^2 + 6s + 1} \right] \frac{1}{2s + 1} \]

From initial value theorem

\[H_3(0) = \lim_{s \to 0} sH_3(s) \]

\[= \lim_{s \to 0} \frac{4}{(2s + 1)(4s^2 + 6s + 1)} \]

\[= \lim_{s \to 0} \frac{4}{(2s + 1)s^3 \left(4 + \frac{6}{s} + \frac{1}{s^2}\right)} \]

\[H_3(0) = 0 \]

From final value theorem

\[H_3(\infty) = \lim_{s \to 0} sH_3(s) \]

\[= \lim_{s \to 0} \frac{4}{(2s + 1)(4s^2 + 6s + 1)} \]

\[H_3(\infty) = 4 \]
7.5 Three identical tanks are operated in series in a non-interacting fashion as shown in fig P7.5. For each tank \(R=1, \tau = 1 \). If the deviation in flow rate to the first tank in an impulse function of magnitude 2, determine

(a) an expression for \(H(s) \) where \(H \) is the deviation in level in the third tank.

(b) sketch the response \(H(t) \)

(c) obtain an expression for \(H(t) \)

solution:

writing energy balance equation for all tanks

\[
q - q_1 = A \frac{dh_1}{dt}
\]

\[
q_1 - q_2 = A \frac{dh_2}{dt}
\]
\[
q_2 - q_3 = A \frac{dh}{dt}
\]

\[
q_1 = \frac{h_1}{R}, \quad q_2 = \frac{h_2}{R}, \quad q_3 = \frac{h}{R}
\]

So we get

\[
q_5 - q_{15} = 0
\]

\[
q_{15} - q_{25} = 0
\]

\[
q_{25} - q_{35} = 0
\]

writing in terms of deviation variables and taking laplace transforms

\[
Q(s) - \frac{H_1(s)}{R} = A_S H_1(s)
\]

\[
\frac{Q_1(s)}{R} - \frac{H_2(s)}{R} = A_S H_2(s)
\]

\[
\frac{H_2(s)}{R} - \frac{H(s)}{R} = A_S H(s)
\]

solving we get

\[
H(s) = \frac{R}{(\tau s + 1)^3} = \frac{1}{(s + 1)^3}
\]

\[
H(s) = \frac{Q(s)}{(\tau s + 1)^3} = \frac{2}{(s + 1)^3}
\]
\[H(t) = L^1[H(s)] = 2 \frac{t^2}{2} e^{-t} \]

\[H(t) = t^2 e^{-t} \]

\[\frac{dH(t)}{dt} = 2te^{-t} - te^{-t} = 0 \]

\[= 2t = t^2 \]

at \(t = 2 \) max will occur.

7.6 In the two-tank mixing process shown in fig P7.6, \(x \) varies from 0 lb salt/ft\(^3\) to 1 lb salt/ft\(^3\) according to step function. At what time does the salt concentration in tank 2 reach 0.6 lb/ft\(^3\)? The hold up volume of each tank is 6 ft\(^3\).

Solution

Writing heat balance equation for tank 1 and tank 2

\[q_x - q_y = V \frac{dy}{dt} \]
\[q_y - q_c = V \frac{dl}{dt} \]

steady state equation

\[q_{xs} - q_{ys} = 0 \]
\[q_{ys} - q_{cs} = 0 \]

writing in terms of deviation variables and taking laplace transforms

\[X(s) - Y(s) = \frac{V}{q} s Y(s) \]

\[\frac{Y(s)}{X(s)} = \frac{1}{\left(\frac{V}{q} s + 1 \right)} = \frac{1}{\tau s + 1}; \tau = \frac{V}{q} \]

\[C(s) = \frac{Y(s)}{(\tau s + 1)} = \frac{X(s)}{(\tau s + 1)^2} \]

\[\frac{C(s)}{X(s)} = \frac{1}{(\tau s + 1)^2} \]

\[X(s) = \frac{1}{s} \]
\[\tau = \frac{V}{q} = \frac{6}{3} = 2 \]

\[C(s) = \frac{X(s)}{s(2s + 1)^2} \]
Starting from first principles, derive the transfer functions $H_1(s)/Q(s)$ and $H_2(s)/Q(s)$ for the liquid level system shown in figure P7.7. The resistance are linear and $R_1 = R_2 = 1$. Note that two streams are flowing from tank 1, one of which flows into tank 2. You are expected to give numerical values of the parameters and in the transfer functions and to show clearly how you derived the transfer functions.
Writing heat balance equation for tank 1

\[q - q_a - q_1 = A_1 \frac{dh_1}{dt} \]

\[q_1 = \frac{h_1}{R_1}, \quad q_a = \frac{h_a}{R_a} \]

\[= q - \frac{h_1}{R_a} - \frac{h_1}{R_1} = A_1 \frac{dh_1}{dt} \]

writing the balance equation for tank 2

\[q_1 - q_2 = A_2 \frac{dh_2}{dt} \]

\[\frac{h_1}{R_1} - \frac{h_2}{R_2} = A_2 \frac{dh_2}{dt} \]

writing steady state equations

\[q_s - \frac{h_s}{R_a} - \frac{h_s}{R_1} = 0 \]
\[\frac{h_1s}{R_1} - \frac{h_2s}{R_2} = 0 \]

writing the equation in terms of deviation variables

\[Q - H_1 \left(\frac{1}{R_a} + \frac{1}{R_1} \right) = A_1 \frac{dH_1}{dt} \]

\[\frac{H_1}{R_1} - \frac{H_2}{R_2} = A_2 \frac{dH_2}{dt} \]

taking laplace transforms

\[Q(s) - H_1(s)\left(\frac{R_1 + R_a}{R_1 R_a} \right) = A_1s H_1(s) \text{---------}(1) \]

and \[\frac{H_1(s)}{R_1} - \frac{H_2(s)}{R_2} = A_2s H_2(s) \text{---------}(2) \]

from (1) we get

\[\frac{H_1(s)}{Q(s)} = \frac{1}{A_1s + \frac{R_1 + R_a}{R_1 R_a}} \]

\[\frac{H_1(s)}{Q(s)} = \left[\frac{R_1 R_a}{R_1 + R_a} \right] \left[\frac{R_1 R_a A_1 s + 1}{R_1 + R_a s + 1} \right] \]
\[
\frac{H_1(s)}{Q(s)} = \left[\frac{R_1 R_2}{R_1 + R_2} \right] \frac{R_2}{\tau_2, s + 1} \; \tau_1 = \frac{R_1 R_2 A_1}{R_1 + R_2}
\]

and from (2) we get
\[
\frac{H_1(s)}{Q(s)} = \left[\frac{R_2 R_1}{R_1 + R_2} \right] \frac{R_2}{\tau_1, s + 1} \left(\frac{R_2}{\tau_2, s + 1} \right) \tau_2 = R_2 A_2
\]

putting the numerical values of parameters

\[
\frac{H_1(s)}{Q(s)} = \left(\frac{2}{3} \right) \frac{1}{\left(\frac{4}{3}, s + 1 \right)}
\]

\[
\frac{H_2(s)}{Q(s)} = \left(\frac{2}{3} \right) \frac{1}{\left(\frac{4}{3}, s + 1 \right) \left(s + 1 \right)}
\]

8.1 A step change of magnitude 4 is introduced into a system having the transfer
\[
\frac{Y(s)}{X(s)} = \frac{10}{s^2 + 1.6s + 4}
\]
Determine (a) % overshoot (b)Rise time (c)Max value of Y(t) (d)Ultimate value of Y(t) (e) Period of Oscillation.
Given \(X(s) = \frac{4}{s} \) \(Y(s) = \frac{40}{s(s^2 + 1.6s + 4)} \)

The transfer function is

\[
\frac{Y(s)}{X(s)} = \frac{10 \times 0.25}{0.2(s^2 + \frac{1.6}{4}s + 1)} = \frac{2.5}{0.25s^2 + 0.4s + 1}
\]

\(\tau^2 = 0.25; \tau = 0.5 \)

\[2\xi \tau = 0.4 \quad \xi = \frac{0.4}{2(0.5)} = 0.4 \ (< 1 = \text{system is underdamped}) \]

we find ultimate value of \(Y(t) \)

\[
Lt \lim_{t \to \infty} Y(t) = Lt_s \left(sY(s) = \frac{40s}{s(s^2 + 1.6 + 4)} \right) = \frac{40}{4} = 10
\]

thus \(B = 10 \)

now, from laplace transform tables

\[
Y(t) = 10 \left[1 - \frac{1}{\sqrt{1-\xi^2}} e^{\frac{\xi}{\tau}} \sin(\alpha + \phi) \right]
\]

where \(\alpha = \frac{\sqrt{1-\xi^2}}{\tau}, \phi = \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi} \)
(a) Over shoot $= \frac{A}{B} = \exp\left(\frac{-\pi \xi}{\sqrt{1 - \xi^2}}\right) = \exp\left(\frac{-\pi \times 0.4}{\sqrt{0.84}}\right) = 0.254$

thus % overshoot = 25.4

c) thus, max value of $Y(t) = A+B = B(0.254)+B = 2.54+10 = 12.54$

e) Period of oscillation $= \frac{2\pi\tau}{\sqrt{1-\xi^2}} = 3.427$

b) For rise time, we need to solve

$$10 \left[1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \tau} \sin(\alpha t + \phi) \right] = 10 \quad \text{for } t = t_r$$

$$= e^{-\xi t_r} \sin(\alpha t_r + \phi) = 0$$

$$= e^{-0.4 t_r} \sin(1.833 t_r + 1.1589) = 0$$

solving we get $t_r = 1.082$

thus

SOLUTION: % Overshoot = 25.4
Rise time = 1.0842
Max $Y(t) = 12.54$
$U(t) Y(t) = 10$
Period of oscillation = 3.427

Comment: we see that the Oscillation period is small and the decay ratio also small = system is efficiently under damped.
8.2 The tank system operates at steady state. At t = 0, 10 ft3 of water is added to tank 1. Determine the maximum deviation in level in both tanks from the ultimate steady state values, and the time at which each maximum occurs.

$A_1 = A_2 = 10$ ft3

$R_1 = 0.1$ ft/CFM $R_2 = 0.35$ ft/CFM.

As the tanks are non interacting the transfer functions are

\[
\frac{H(s)}{Q(s)} = \frac{K_1}{\tau_1 s + 1} = \frac{0.1}{(s + 1)}
\]

\[
\frac{H_2(s)}{Q(s)} = \frac{R_2}{(\tau_1 s + 1)(\tau_2 s + 1)} = \frac{0.35}{(s + 1)(3.5s + 1)}
\]

Now, an impulse of $\partial(t) = 10$ ft3 is provided

$Q(s) = 10 = H_1(s) = \frac{1}{s + 1} = e^{-\tau}$

and $H_2(s) = \frac{3.5}{(s + 1)(3.5s + 1)} = \frac{3.5}{3.5s^2 + 4.5s + 1}$

Now $\tau^2 = 3.5 = \tau = 1.871$

$2\xi\tau = 4.5 = \xi = \frac{4.5}{2\tau} = 1.202$

thus, this is an overdamped system
Using fig 8.5, for $\xi = 1.2$, we see that maximum is attained at

$$\frac{t}{\tau} = 0.95, t = 1.776 \text{ min}$$

And the maximum value is around $\tau_2 = 0.325 Y_2(t) = 0.174$

$$= H_2(t) = 0.174 \times 3.5 = 0.61 \text{ ft}$$

thus max deviation is H_1 will be at $t = 0 = H_1 = 1 \text{ ft}$

max deviation is H_2 will be at $t = 1.776 \text{ min} = H_{2\text{Max}} = 0.61 \text{ ft}.$

Comment: the first tank gets the impulse and hence it max deviation turns out to be higher than the deviations for the second tank. The second tank exhibits an increase response ie the deviation increases, reaches the $H_{2\text{Max}}$ falls off to zero.

8.3 The tank liquid level shown operates at steady state when a step change is made in the flow to tank 1. The transient response in critically damped, and it takes 1 min for level in second tank to reach 50% of total change. If $A_1/A_2 = 2$, find R_1/R_2. Calculate \(\tau \) for each tank. How long does it take for level in first tank to reach 90% of total change?

For the first tank, transfer function $\frac{H_1(s)}{Q(s)} = \frac{R_1}{\tau s + 1}$

For the second tank $\frac{H_2(s)}{Q(s)} = \frac{R}{(\tau_1 s + 1)(\tau_2 s + 1)}$
\[\frac{H_z(s)}{Q(s)} = \frac{R_z}{\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2)s + 1} \]

\[Q(s) = \frac{1}{s} : H_z(s) = \frac{1}{s} \frac{R_2}{\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2)s + 1} \]

\[\tau(\text{parameter}) = \sqrt{\tau_1 \tau_2} \]

For \(\tau(\text{parameter}) = \sqrt{\tau_1 \tau_2} \)

for \(\xi = 1, H_z(t) = R_2 \left[1 - \left(1 + \frac{t}{\sqrt{\tau_1 \tau_2}} \right) e^{-\frac{t}{\sqrt{\tau_1 \tau_2}}} \right] \]

given, \(t = 1 \) for \(\tau(\text{parameter}) = \sqrt{\tau_1 \tau_2} \)

\[H_z(t \rightarrow \infty) = R_2 (1 - (0)) = R_2 \]

\[= R_2 \left[1 - \left(1 + \frac{1}{\sqrt{\tau_1 \tau_2}} \right) e^{-\frac{1}{\sqrt{\tau_1 \tau_2}}} \right] = \frac{R_2}{2} - I \]

also \(2\xi \tau = \tau_1 + \tau_2 \)

\[\xi = 1 = \frac{\tau_1 + \tau_2}{2} = \tau = A_1 R_1 = A_2 R_2 = \frac{R_1}{R_2} = \frac{A_2}{A_1} = 0.5 \]

from I

\[1 - 0.5 = \left(1 + \frac{1}{\tau} \right) e^{-\frac{1}{\tau}} \]
\[H_1(s) = \frac{R_1}{s(\tau_1 s + 1)}; \quad H_1(t) = R_1(1 - e^{\frac{-t}{\tau_1}}) \]

\[0.94(t \to \infty) = R_1(1 - e^{\frac{-t}{\tau_1}}) \]

\[0.9R_1 = R_1(1 - e^{\frac{-t}{0.596}}) \]

\[e^{\frac{-t}{0.596}} = 0.1; \quad t = 1.372 \text{ min} \]

Thus

\[\frac{R_1}{R_2} = 0.5 \]

\[\tau_1 = \tau_2 = 0.596 \text{ min} \]

\[t_{90\%} = 1.372 \text{ min} \]

Comment:
Small values of \(\tau_1, \tau_2 \) indicate the system regains the steady state quickly. Also as \(R_1 > R_2 \), the second tank responds more slowly to changes than the first tank.

8.4 Assuming the flow in the manometer to be laminar function between applied pressure \(P_1 \) and the manometer reading \(h \). Calculate a) steady state gain, b) \(\tau \), c) \(\xi \). Comment on the parameters and their relation to the physical nature of this problem.
Assumptions:

Cross-sectional area = a
Length of mercury in column = L
Friction factor = 16/Re (laminar flow)
Mass of mercury = mg

Writing a force balance on the mercury

Mass X acceleration = pressure force - drag force - gravitational force

\[(AL\rho)\frac{d^2h}{dt^2} = Ap_1 - \frac{Apu^2}{2} - A(\rho gh)\]

\[\frac{L \frac{d^2h}{dt^2}}{g} + \frac{8\mu \frac{dh}{dt}}{\rho g D} + \frac{h}{\rho g} = \frac{p_1}{\rho g}\]

At Steady state, \[h_r = \frac{p_{1r}}{\rho g}\]

\[= \frac{L \frac{d^2H}{dt^2}}{g} + \frac{8\mu \frac{dH}{dt}}{\rho g D} + H = \frac{p_1}{\rho g}\]

\[= \frac{L}{g} \left[s^2 H(s) + \frac{8\mu}{\rho g D} s H(s) + H(s) = \frac{p_1(s)}{\rho g} \right]\]

\[= \left[k_1 s^2 + k_2 s + 1 \right] H(s) = k_3 p_1(s)\]
\[
\frac{H_i(s)}{p_i(s)} = \frac{k_3}{(k_1 s^2 + k_2 s + 1)}
\]

Where \(k_1 = \frac{L}{g} \); \(k_2 = \frac{8\mu}{\rho g D} \); \(k_3 = \frac{1}{\rho g} \);

Thus \(\frac{H_i(s)}{p_i(s)} = \frac{R}{(\tau^2 s^2 + 2\xi \tau s + 1)} \)

Where \(R = \frac{1}{\rho g} \); \(\tau^2 = \frac{L}{g} \); \(2\xi \tau = \frac{8\mu}{\rho g D} \);

Now

b) \(\tau = \sqrt{\frac{L}{g}} \);

c) \(\xi = \frac{8\mu}{\rho g D} \cdot \frac{1}{2\tau} = \left(\frac{4\mu}{\rho g D} \right) \left(\frac{L}{g} \right)^{-1} \)

Steady state gain

\[
Lt \ G(s) = R = \frac{1}{\rho g}
\]

Comment: a) \(\tau \) is the time period of a simple pendulum of length \(L \).

b) \(\xi \) is inversely proportional to \(\tau \), smaller the \(\tau \), the system will tend to move from underdamped to overdamped characteristics.

8.5 Design a mercury manometer that will measure pressure of up to 2 atm, and give responses that are slightly underdamped with \(\xi = 0.7 \)

Parameter to be decide upon:

a) Length of column of mercury
b) Diameter of tube.
Considering h_{max} to be the maximum height difference to be used

\[p_1 = \rho gh_{\text{max}} = h_{\text{max}} = \frac{2 \times 1.01325 \times 10^5}{9.81 \times 13600}; \]

\[h_{\text{max}} = 1.51 \text{ m}; \]

Assuming the separation between the tubes to be 30 cm,

We get an additional length of 0.47 m;

Which gives us the total length $L = 1.5176.47$

$L = 2 \text{ M}$

Now, $\xi = 0.7 = \left(\frac{4 \mu}{\rho g D} \right) \left(\frac{g}{L} \right) = 0.7$

\[D = \frac{4 \mu}{0.7 \rho g} \sqrt{\frac{g}{L}} = \frac{4 \times 1.6 \times 10^{-3} \times \sqrt{9.81}}{0.74 \times 13600 \times 9.81} = 1.5 \times 10^{-7} \]

\[= 0.00015 \]

As can be seen, the values yielded are not proper, with too small a diameter and too large a length. A smaller ξ value and lower measuring range of pressure might be better.
8.6 verify that for a second order system subjected to a step response,

\[
Y(t) = 1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\frac{t}{\tau}} \sin\left[\sqrt{1 - \xi^2}\right]\frac{t}{\tau} + \tan^{-1}\frac{\sqrt{1 - s^2}}{s}
\]

With \(\xi < 1\)

\[
Y(s) = \frac{1}{s} \frac{1}{(\tau^2 s^2 + 2 \xi \tau s + 1)}
\]

\[
\tau^2 s^2 + 2 \xi \tau s + 1 = (s - s_1)(s - s_2)
\]

where \(s_1 = -\frac{\xi}{\tau} + \frac{\sqrt{\xi^2 - 1}}{\tau} = -a + b\)

\(s_2 = -\frac{\xi}{\tau} + \frac{\sqrt{\xi^2 - 1}}{\tau} = -a + b\)

\[
Y(s) = \frac{\left(\frac{1}{\tau^2}\right)}{s(s - s_1)(s - s_2)}
\]

\[
Y(s) = \frac{1}{\tau^2} \left[\frac{A}{s} + \frac{B}{s - s_1} + \frac{C}{s - s_2}\right]
\]

\[
Y(s) = \frac{1}{\tau^2} \left[\frac{A}{s} + \frac{B}{s - s_1} + \frac{C}{s - s_2}\right]
\]

\[
A(s^2 - (s_1 + s_2)s + s_1s_2) + Bs(s - s_2) + Cs(s - s_1) = 1
\]

\(A + B + C = 0\)
\[-A(s_1 + s_1) - Bs_2 - Cs_1 = 1\]

\[As_1s_1 = 1; A = \frac{1}{s_1s_2} = B + C = -\frac{1}{s_1s_2}\]

\[= Bs_2 + Cs_2 = -\frac{1}{s_1}\]

\[= Cs_1 + Cs_2 = \frac{s_1 + s_2}{s_1s_2} = \frac{1}{s_2} = \frac{1}{s_2} - \frac{1}{s_1}\]

\[= C = \frac{1}{s_2(s_2 - s_1)} = B = -\frac{1}{s_2(s_2 - s_1)} - \frac{1}{s_1s_2} = -\frac{1}{s_1(s_2 - s_1)}\]

\[Y(s) = \frac{1}{\tau^2} \left[\frac{1}{s_1s_2} - \frac{1}{s_1(s_2 - s_1)} \frac{1}{s_1^2s_2} + \frac{1}{s_2(s_2 - s_1)} \frac{1}{s_2^2} \right] \]

8.6 \[Y(t) = \frac{1}{\tau^2} \left[\frac{1}{s_1s_2} - \frac{1}{s_1(s_2 - s_1)} e^{s_1t} + \frac{1}{s_2(s_2 - s_1)} e^{s_2t} \right] \]

\[\frac{1}{s_1s_2} = 1\]

\[Y(t) = 1 - \frac{1}{\tau^2 (s_2 - s_1)} \left[\frac{1}{s_1} e^{s_1t} - \frac{1}{s_2} e^{s_2t} \right] \]

\[Y(t) = 1 - \frac{1}{(s_2 - s_1)} \left[s_2 e^{s_1t} - s_1 e^{s_2t} \right] \]

\[Y(t) = 1 + \frac{\tau}{\sqrt{s_2^2 - 1}} \left[s_2 e^{s_1t} - s_1 e^{s_2t} \right] \]
\[Y(t) = 1 - \frac{\sigma e^{-\frac{t}{\tau}}}{2\sqrt{\zeta^2 - 1}} \left[(-a - jb)(\cos bt + j \sin bt) - (-a + jb)(\cos bt - j \sin bt) \right] \]

\[Y(t) = 1 - \frac{\sigma e^{-\frac{t}{\tau}}}{2\sqrt{\zeta^2 - 1}} \left[- 2 \, jb(\cos bt + a \sin bt) \right] \]

\[Y(t) = 1 - \frac{\sigma e^{-\frac{t}{\tau}}}{2\sqrt{\zeta^2 - 1}} \left[\sqrt{1 - \zeta^2} \cos (\alpha t) + \xi \sin (\alpha t) \right] \]

\[\alpha = \sqrt{1 - \xi^2} \]

\[\phi = \tan^{-1} \left[\frac{\sqrt{1 - \xi^2}}{\xi} \right] \]

verified

8.14 From the figure in your text \(Y(4) \) for the system response is expressed

b) verify that for \(\xi = 1 \), and a step input

\[Y(t) = 1 - \left(1 + \frac{t}{\tau} \right) e^{-\frac{t}{\tau}} \]
\[Y(s) = \frac{1}{s} \frac{1}{\tau^2 s^2 + \tau s + 1} \]

\[Y(s) = \frac{1}{s(\tau s + 1)^2} = \frac{A}{B} + \frac{Bs + C}{(\tau + 1)^2} \]

\[A(\tau^2 s^2 + 2\tau s + 1) + Bs^2Cs = 1 \]

\[A\tau^2 + B = 0 \]

\[2A\tau + C = 0 \]

\[A = 1; B = \tau^2; C = 2\tau \]

\[Y(s) = \frac{1}{s} - \frac{\tau(\tau s + 1) + \tau}{\tau(s + 1)^2} \]

\[Y(s) = \frac{1}{s} - \frac{\tau}{(\tau s + 1)} - \frac{\tau}{(\tau s + 1)^2} \]

\[Y(t) = 1 - e^{-\frac{t}{\tau}} - \frac{1}{\tau} te^{-\frac{t}{\tau}} \]

\[Y(t) = 1 - (1 + \frac{t}{\tau})te^{-\frac{t}{\tau}} \]

proved

c) for \(\xi > 1 \), prove that the step response is

\[Y(t) = 1 - e^{-\frac{t}{\tau}} [\cosh(\alpha t) + \beta \sinh(\alpha t)] \]
\[\alpha = \frac{\sqrt{\xi^2 - 1}}{\tau} \quad \beta = \frac{\xi}{\sqrt{\xi^2 - 1}} \]

Now \(Y(s) = \frac{1/ \tau^2}{s(s - B)(s - s_2)} \)

Where
\[s_1 = -\frac{\xi}{\tau} + \frac{\sqrt{\xi^2 - 1}}{\tau} \]
\[s_2 = -\frac{\xi}{\tau} - \frac{\sqrt{\xi^2 - 1}}{\tau} \]

from 8.6(a)

\[Y(t) = \frac{1}{\tau^2} \left[\frac{1}{s_1 s_2} \left(-\frac{1}{s_1 (s_2 - s_1)} + \frac{1}{s_2 (s_2 - s_1)} \right) \right] \]
\[Y(t) = 1 - \frac{1}{(s_2 - s_1)} \left[s_2 e^{s_2 t} - s_1 e^{s_1 t} \right] \]
\[Y(t) = 1 + \frac{\tau}{2\sqrt{\xi^2 - 1}} \left[-\frac{\xi - \sqrt{1 - \xi^2}}{\tau} e^{\frac{\xi^2 - 1}{\tau}} - \frac{-\xi + \sqrt{1 - \xi^2}}{\tau} e^{\frac{\xi^2 - 1}{\tau}} - \frac{\xi}{\tau} e^{\frac{\xi^2 - 1}{\tau}} t \right] \]
\[Y(t) = 1 + \frac{e^\frac{\xi}{\tau}}{2\sqrt{\xi^2 - 1}} \left[-\xi e^{\frac{\xi^2 - 1}{\tau}} + \xi e^{\frac{\xi^2 - 1}{\tau}} - \sqrt{\xi^2 - 1} e^{\frac{\xi^2 - 1}{\tau}} - \sqrt{\xi^2 - 1} e^{\frac{\xi^2 - 1}{\tau}} t \right] \]
\[Y(t) = 1 + e^{-\frac{\xi}{\tau}} \left[-\frac{\xi}{\sqrt{\xi^2 - 1}} \left(\frac{e^{\alpha t} - e^{-\alpha t}}{2} \right) - \left(\frac{e^{\alpha t} + e^{-\alpha t}}{2} \right) \right] \]

\[Y(t) = 1 - e^{-\frac{\xi}{\tau}} [\cosh(\alpha t) + \beta \sinh(\alpha t)] \]

8.7 Verify that for a unit step-input

(1) overshoot = \[\exp \left(-\frac{\pi \xi}{\sqrt{1 - \xi^2}} \right) \]

(2) Decay ratio = \[\exp \left(-\frac{2\pi \xi}{\sqrt{1 - \xi^2}} \right) \]

For a unit step input the response (\(\xi < 1\)):

\[Y(t) = 1 - \frac{e^{-\left(\frac{t}{\tau} \right)}}{\sqrt{1 - \xi^2}} \sin \left(\sqrt{1 - \xi^2} \frac{t}{\tau} + \tan^{-1}\left(\frac{\sqrt{1 - \xi^2}}{\xi} \right) \right) \]

(1) we have to find time \(t \) where the maxima occurs

\[\frac{dY}{dt} = 0 \]

\[\frac{dY}{dt} = \frac{\xi e^{-\left(\frac{t}{\tau} \right)}}{\tau \sqrt{1 - \xi^2}} \sin \left(\sqrt{1 - \xi^2} \frac{t}{\tau} + \tan^{-1}\left(\frac{\sqrt{1 - \xi^2}}{\xi} \right) \right) \]

\[-\frac{e^{-\left(\frac{t}{\tau} \right)}}{\tau} \cos \left(\sqrt{1 - \xi^2} \frac{t}{\tau} + \tan^{-1}\left(\frac{\sqrt{1 - \xi^2}}{\xi} \right) \right) = 0 \]

\[\tan \left(\sqrt{1 - \xi^2} \frac{t}{\tau} + \tan^{-1}\left(\frac{\sqrt{1 - \xi^2}}{\xi} \right) \right) = \frac{\sqrt{1 - \xi^2} t}{\xi} \]

\[\frac{\sqrt{1 - \xi^2} t}{\xi} = n\pi \]

for maxima

\[= \frac{\sqrt{1 - \xi^2} t}{\xi} = 2n\pi \]
\[t = \frac{\pi}{\sqrt{1 - \xi^2}} \]

8.8 Verify that for \(X(t) = A \sin \omega t \), for a second order system,

\[
Y(t) = \frac{A}{\sqrt{(1 - (\omega t)^2)^2 + (2\xi \tau)^2}} \sin(\omega t + \phi)
\]

\[\phi = -\tan^{-1} \frac{2\xi \omega \tau}{1 - (\omega \tau)^2} \]

\[
Y(s) = \frac{A}{(s^2 + \omega^2)(\tau^2 s^2 + 2\xi \tau s + 1)}
\]

\[
Y(s) = \frac{A \omega}{\tau^2} \left[\frac{A^1}{(s - j\omega)} + \frac{B^1}{s + j\omega} + \frac{C^1}{(s - s_1)} + \frac{D^1}{(s - s_2)} \right]
\]

Now as \(t \to \infty, Y(t) = A^{11} \cos \omega t + B^{11} \sin \omega t \)

Where \(A^{11} = A^1 + B^1 \)

\(B^{11} = j(A^1 - B^1) \)

to determine \(A^1, B^1 \) put \(s = j\omega, -j\omega \) in the order

\[
A^1 = \frac{-j}{2\omega(j\omega - s_1)(j\omega - s_2)} B^1 = \frac{j}{2\omega(j\omega + s_1)(j\omega + s_2)}
\]

\[
A^{11} = \frac{j}{2\omega} \left[\frac{1}{(s_1 + j\omega)(s_2 + j\omega)} - \frac{1}{(j\omega - s_1)(j\omega - s_2)} \right]
\]
\[A^{11} = \frac{j}{2\omega} \left[\frac{(-\omega^2 - js_1\omega - js_2\omega + s_1s_2) - (-\omega^2 + js_1\omega + js_2\omega + s_1s_2)}{(s_1^2 + \omega^2)(s_2^2 + \omega^2)} \right] \]

\[A^{11} = \frac{(s_1 + s_2)}{(s_1^2 + \omega^2)(s_2^2 + \omega^2)} \]

simply \[B^{11} = \frac{(s_1s_2 - \omega^2)}{\omega(s_1^2 + \omega^2)(s_2^2 + \omega^2)} \]

using \[s_1 + s_2 = \frac{-2\xi}{\tau}, \quad s_1s_2 = \frac{1}{\tau^2} \]

\[s_1^2 + s_2^2 = \frac{4\xi^2}{\tau^2} - \frac{2}{\tau^2} = \frac{2(2\xi^2 - 1)}{\tau^2} \]

\[A^{11} = \frac{A\omega}{\tau^2} \left[\frac{-\frac{2\xi}{\tau}}{\frac{1}{\tau^2} + \frac{2\omega^2}{\tau^2}(2\xi^2 - 1) + \omega^4} \right] \]

\[\frac{-2A\omega\xi}{\tau^3} = \frac{-2A\omega\xi}{(\omega^2 - \frac{1}{\tau})^2 + (2\xi\omega)^2} = \frac{-2A\omega\xi}{(1 - (\omega\tau)^2)^2 + (2\xi\omega\tau)^2} \]

and \[B^{11} = \frac{A\omega}{\tau} \left[\frac{\frac{1}{\tau^2} - \omega^2}{\omega\left(\frac{1}{\tau^2} - \omega^2\right)^2 + \left(\frac{2\xi\omega}{\tau}\right)^2} \right] \]

\[\frac{A(1 - (\omega\tau)^2)}{(1 - (\omega\tau)^2)^2 + (2\xi\omega\tau)^2} \]
Thus \(\tan \phi = \frac{A^{11}}{B^{11}} = -\frac{2\omega \tau \xi}{1 - (\omega \tau)^2} \)

And, \(A_{New} = \frac{A}{\sqrt{((1 - (\omega \tau)^2)^2 + (2\xi \omega \nu)^2}} \) (using \(\sqrt{A^{11} + B^{11}} = A_{New} \))

Thus, \(Y(t) = \frac{A}{\sqrt{((1 - (\omega \tau)^2)^2 + (2\xi \omega \nu)^2}} \sin(\omega t + \phi) \)

proved

8.9) If a second-order system is over damped, it is more difficult to determine the parameters \(\xi \) & \(\tau \) experimentally. One method for determining the parameters from a step response has been suggested by R.c Olderboung and H.Sartarius (The dynamics of Automatic controls, ASME, P7.8, 1948), as described below.

(a) Show that the unit step response for the over damped case may be written in the form.

\[s(t) = 1 - \frac{r_1 e^{\tau_1 t} - r_2 e^{\tau_2 t}}{r_1 r_2} \]

Where \(r_1 \) and \(r_2 \) are the roots of

\[\tau^2 s^2 + 2\xi \omega s + 1 = 0 \]

(b) Show that \(s(t) \) has an inflection point at

\[t_i = \frac{\ln(r_2 / r_1)}{(r_2 - r_1)} \]

© Show that the slope of the step response at the inflection point

\[\frac{d(s)}{dt} \bigg|_{t=t_i} = s'(t_i) \]

Where, \(s'(t_i) = -r_1 e^{\tau_1 t} = -r_2 e^{\tau_2 t} \)
\[-r_1 \left(\frac{r_2}{r_1} \right)^{r_2(r_1-r_2)^2} \]

(d) Show that the value of step response at the inflection point is
\[s^1(t_i) = 1 + \frac{r_1 r_2}{r_1 r_2} s^1(t_i)\] and that hence
\[1 - \frac{s(t_i)}{s^1(t_i)} = -\frac{1}{r_1} - \frac{1}{r_2}\]

(e) on a typical sketch of a unit step response show distances equal to
\[1 - \frac{s(t_i)}{s^1(t_i)} \quad \text{&} \quad \frac{1}{s^1}(t_i)\]

(f) Relate \(\xi\) & \(\tau\) to \(r_1\) & \(r_2\)

(a) \[
G(s) = \frac{1}{\tau^2 s^2 + 2\xi\tau s + 1} = \frac{1}{\tau^2} \left(\frac{s^2 + \left(\frac{2\xi}{\tau} \right)s + 1}{(s-r_1)(s-r_2)} \right) = \frac{1}{\tau^2} \]

= \[
Y(s) = \frac{1}{\tau^2 \frac{s}{s-r_1}(s-r_2)} \]

\[
\frac{1}{s(s-r_1)(s-r_2)} = A + \frac{B}{s-r_1} + \frac{C}{s-r_2} \]

\[1 = A(s-r_1)(s-r_2) + Bs(s-r_2) + cs(s-r_1) \]

Put \(s = 0\) = \(Ar_1 r_2 = 1\); \(A = \tau^2\)

Put \(s = r_1 = Br_1 (r_1 - r_2) = 1; B = \frac{1}{r_1(r_1-r_2)} \]

\[s = r_2 = Cr_2 (r_2 - r_1) = 1; C = \frac{1}{r_2(r_2-r_1)} \]

\[Y(s) = \frac{1}{\tau^2} \left(\frac{\tau^2}{s} + \frac{1}{r_1(r_1-r_2)(s-r_1)} + \frac{1}{r_2(r_2-r_1)(s-r_2)} \right) \]
\[Y(t) = \frac{1}{r^2} \left(t^2 + \frac{e^{\phi_1 t}}{r_1(r_1 - r_2)} + \frac{e^{\phi_2 t}}{r_2(r_2 - r_1)} \right) \]

\[Y(t) = 1 - \left(\frac{1}{r_1 - r_2} \left[r_1 e^{\phi_1 t} - r_2 e^{\phi_2 t} \right] \right) \]

\[Y(t) = 1 - \frac{\phi r_1 e^{\phi_1 t} - r_2 e^{\phi_2 t}}{(r_1 - r_2)} \]

(b) For inflection point, \(\frac{d^2 s}{dt^2} = 0 \) & \(\frac{d^3 s}{dt^3} = 0 \)

\[\frac{ds}{dt} = -\frac{r_1 r_2 (e^{\phi_1 t} - e^{\phi_2 t})}{r_1 - r_2} \]

\[\frac{d^2 s}{dt^2} = -\frac{r_1 r_2 (r_2 e^{\phi_1 t} - r_1 e^{\phi_2 t})}{r_1 - r_2} = 0 \]

\[= u_1 e^{\phi_1 t} = r_1 e^{\phi_1 t} = r_2 = e^{(\alpha_1 - \alpha_2) t} \]

\[= t_i = \ln \left(\frac{r_2}{r_1} \right) \]

(c) \(\frac{ds(t)}{dt} \bigg|_{t=t_i} = s'(t_i) \]

\[= -\frac{r_1 r_2}{r_1 - r_2} \left[r_2 \left(\frac{r}{r_1} \right)^{\alpha_2 - \alpha_1} - \left(\frac{r_2}{r_1} \right)^{\alpha_2 - \alpha_1} \right] \]
\[= - \frac{r_1 r_2}{r_1 - r_2} \left[\left(\frac{r_3}{r_1} \right)^{r_2/r_3} - \frac{r_1^2}{r_1 - r_2} \left(\frac{r_3}{r_2 - r_1} \right) \right] \]

\[= - \frac{r_1 (r_1 - r_2)}{r_1 - r_2} \left[\left(\frac{r_3}{r_1} \right)^{r_2/r_3} \right] \]

\[\frac{ds(t)}{dt} \bigg|_{t=t_i} = -r_1 \left[\left(\frac{r_3}{r_1} \right)^{r_2/r_3} \right] \]

Also \[\frac{ds(t)}{dt} \bigg|_{t=t_i} = -r_1 r_2 \left(e^{r_2 t} - e^{r_1 t} \right) \]

\[\frac{ds(t)}{dt} \bigg|_{t=t_i} = -r_1 (r_1 - r_2) \left(\frac{r_1}{r_2} - 1 \right) \]

\[\frac{ds(t)}{dt} \bigg|_{t=t_i} = -r_1 e^{r_2 t} = -r_2 e^{r_1 t} \]

(d) \[s(t_i) = 1 - \frac{r_1 e^{r_2 t_i} - r_2 e^{r_1 t_i}}{r_1 - r_2} = 1 + \frac{s^1(t_i) \left[\frac{r_1}{r_2} - \frac{r_2}{r_1} \right]}{r_1 - r_2} \]

\[= s(t_i) = 1 + \frac{s^1(t_i) \left[\frac{r_1}{r_2} - \frac{r_2}{r_1} \right]}{r_1 - r_2} \]

Now
\[s(t) - 1 = s^1(t) \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \]

\[\frac{1 - s(t)}{s'(t)} = \left[-\frac{1}{r_1} - \frac{1}{r_2} \right] \]

\[r_1 + r_2 = \frac{1}{\tau^2} = \sqrt{r_1 r_2} = \frac{1}{r} ; \tau = \frac{1}{\sqrt{r_1 r_2}} \]

\[r_1 + r_2 = \pm \frac{2\xi}{\tau} \Rightarrow r_1 + r_2 = -2\sqrt{r_1 r_2} \xi \]

\[\xi = -\frac{1}{2} \left[\sqrt{\frac{r_2}{r_1}} + \sqrt{\frac{r_1}{r_2}} \right] \]

proved.

8.10 Y(0), Y(0.6), Y(\infty) if

\[Y(s) = \frac{1}{s} \frac{25(s+1)}{(s^2 + 2s + 1)} \]

\[Y(s) = \left(1 + \frac{1}{s} \right) \frac{1}{\left(\frac{s^2}{25} + \frac{2s}{25} + 1 \right)} \]

\[Y(s) \text{ impulse response + step response of } G(s) \]

Where \[G(s) = \frac{1}{\left(\frac{s^2}{25} + \frac{2s}{25} + 1 \right)} \]
\[
Y(t) = \frac{1}{\sqrt{1-\xi^2}} e^{-\frac{\xi}{\tau} \sin \sqrt{1-\xi^2} \frac{t}{\tau}} + \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi}
\]

\[
Y(t) = 1 + 5.0.3e^t \sin (4.899t) - 1.02e^{-t} \sin (4.899t + 1.369)
\]

\[Y(0) = 1 - 1 = 0
\]
\[Y(0.6) = 1 + 0.561 + 0.515
\]
\[Y(\infty) = 1
\]

Comment: as we can see, the system exhibits an inverse response by increasing from zero to more than 1 and as \(t \) tend to \(\infty \), will reach the steady state value of 1.

8.11 In the system shown the dev in flow to tank 1 is an impulse of magnitude 5. \(A_1 = 1 \text{ ft}^2 \), \(A_2 = A_3 = 2 \text{ ft}^2 \), \(R_1 = 1 \text{ ft/cfm} \) \(R_2 = 1.5 \text{ ft/cfm} \).

(a) Determine \(H_1(s) \), \(H_2(s) \), \(H_3(s) \)

Transfer function for tank 1 \(\frac{H_1(s)}{Q(s)} = \frac{1}{(\tau_i s + 1)} \)

\[H_1(s) = \frac{5}{(s + 1)}\]
from tank 2, \(\frac{H_2(s)}{Q(s)} = \frac{R_2}{(\tau_1 s + 1)(\tau_2 s + 1)} = \frac{1.5}{(s + 1)(3s + 1)} \)

for tank 3, \(q_2 - q_e = A_3 \frac{dh_3}{dt} \)

\(q_3 = q_e (\text{const}) = Q_2 = A_3 \frac{dh_3}{dt} \)

\(\frac{H_2}{R_2} = A_3 \frac{dh_3}{dt} \)

thus, \(A_3 \cdot H_3(s) = \frac{H_2(s)}{R_2} = \frac{H_3(s)}{H_2(s)} = \frac{1}{3s} \)

\(A_3 \cdot H_3(s) = \frac{H_2(s)}{R_2} = \frac{H_3(s)}{H_2(s)} = \frac{1}{3s} \)

\(\frac{H_3(s)}{Q(s)} = \frac{0.5}{s(s + 1)(3s + 1)} \)

8.11© \(H_1(s) = \frac{5}{s + 1} \)

\(H_1(t) = 5e^{-t} \)

\(H_1(3.46) = 0.155A \)

\(\frac{H_2(s)}{Q(s)} = \frac{1.5}{3s^2 + 4s + 1} \)

\(Q(t) = 5 = H_2(s) = \frac{7.5}{3s^2 + 4s + 1} \)
\[\tau = \sqrt{3} \]

\[2\xi \tau = 4 \]

\[\xi = \frac{4}{2\tau} = \frac{4}{2\sqrt{3}} = 1.155 \]

from fig 8.5

\[\xi = 1.155 \text{ and } \frac{t}{\tau} = \xi = \frac{t}{\tau} = \frac{3.46}{\sqrt{3}} = 2 \]

\[\hat{H}_1(t) = 0.265 \times 7.5 \]

\[H_2(t) = \frac{0.265 \times 7.5}{\tau} = 1.147 \]

\[\frac{H_2(s)}{Q(s)} = \frac{0.5}{s(3s^2 + 4s + 1)} \]

\[Q(s) = 5 = H_2(s) = \frac{2.5}{s(3s^2 + 4s + 1)} \]

\[\tau = \sqrt{3} \quad \xi = \frac{2}{\sqrt{3}} \]

from fig 8.2 at \(\frac{t}{\tau} = 2, \xi = 1.155 \)

\[Y(t) = 0.54 \]

\[H_3(t) = 0.54 \times 2.5 = 1.35 \]
8.12 sketch the response \(Y(t) \) if \(Y(s) = \frac{e^{-2s}}{(s^2 + 1.2s + 1)} \)

Determine \(Y(t) \) for \(t = 0, 1, 5, \infty \)

\[
Y(s) = \frac{e^{-2s}}{(s^2 + 1.2s + 1)} = \frac{e^{-2s}}{(s + 0.6)^2 + (0.8)^2} = \frac{1}{0.8} \frac{e^{-2s}(0.8)}{(s + 0.6)^2 + (0.8)^2}
\]

\[
Y(t) = 1.25e^{-6(t-2)} \sin(0.8(t-2)) \quad t \geq 2
\]

for \(t = 0 \) \(Y(0) = 0 \)

\(t = 1 \) \(Y(1) = 0 \)

\(t = 5 \) \(Y(5) = 0.14 \)

\(t = \infty \) \(Y(\infty) = 0 \)

Problem 8.13 The system shown is at steady state at \(t = 0 \), with \(q = 10 \) cfm

\(A_1 = 1 \text{ft}^2, A_2 = 1.25 \text{ft}^2, R_1 = 1 \text{ ft/cfm}, R_2 = 0.8 \text{ ft/cfm.} \)

a) If flow changes from 10 to 11 cfm, find \(H_2(s) \).

b) Determine \(H_2(1), H_2(4), H_2(\infty) \)

c) Determine the initial levels \(h_1(0), h_2(0) \) in the tanks.

d) obtain an expression for \(H_1(s) \) for unit step change.
Writing mass balances,

\[q - \frac{(h_1 - h_2)}{R_1} = A_1 \frac{dh_1}{dt} \text{ (for tan k 1)} \]

At steady state \(q_2 - \frac{(h_{1s} - h_{2s})}{R_1} = h_{1s} - h_{2s} \)

Also for tank 2

\[\frac{(h_1 - h_2)}{R_1} - \frac{h_2}{R_2} = A_2 \frac{dh_2}{dt} \]

At steady state

\[\frac{(h_{1s} - h_{2s})}{1} = \frac{h_{2s}}{0.8} = h_{2s} = 0.8 \times 10 = 8 \]

\(h_{1s} = 18 \)

C) \(h_{1s} = 18 \) ft \(h_2 (0) = 8 \) ft

The equations in terms of deviation variables

\[Q - Q_1 = A_1 \frac{dH_1}{dt} \text{ where } Q_1 = \frac{H_1 - H_2}{R_1} \]

\[Q_1 - Q_2 = A_2 \frac{dH_2}{dt} \quad Q_2 = \frac{H_2}{R_2} \]

\[\frac{H_1(s)}{Q(s)} = \frac{R_2}{\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2 + A_1 R_2)s + 1} = \frac{0.8}{s^2 + 2.8s + 1} \]
\[
H_2(s) = \frac{0.8}{s(s^2 + 2.8s + 1)} \quad (Ans\ 8.31(a))
\]

Step response of a second order system

\[\tau^2 = 1 \Rightarrow \tau = 1\]

\[2\xi\tau = 2.8; \xi = \frac{2.8}{2} = 1.4\]

\(a) t = 1 = \frac{t}{\tau} = 1; H_2(t) = 0.8(0.22) = 0.176\text{ ft (from fig)}\)

\(b) t = 4 = \frac{t}{\tau} = 4; H_2(t) = 0.8(0.78) = 0.624\text{ ft (from fig)}\)

\(c) t \to \infty = H_2(t \to \infty) = 0.8\text{ ft}\)

Thus

\[H_2(1) = 0.176\text{ ft}\]
\[H_2(4) = 0.624\text{ ft}\]
\[H_2(\infty) = 0.8\text{ ft}\]

8.13(d) we have

\[Q(s)Q_1(s) = A_1(s)H_1(s)\]
\[Q_1(s) - Q_2(s) = A_2(s)H_2(s)\]
\[Q(s) - Q_2(s) = A_1(s)H_1(s) + A_2(s)H_2(s)\]

\[Q(s) - A_1(s)H_1(s) = \left(\frac{1}{R_s} + A_2(s)H_2(s)\right)\]
\[H_2(s) = \left(\frac{1 + \tau_2 s}{R_2} \right) H_2(s) \]

\[H_2(s) = \frac{R_2 (Q(s) - A_1 s H_1(s))}{H \tau_2 s} \]

We have
\[\frac{H_2(s)}{Q(s)} = \left(\frac{R_2}{\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2 + A_1 R_2) s + 1} \right) = \frac{R_2}{\text{Deg}} \]

\[\frac{R_2 H_1(s)}{\text{Deg}} = \left(\frac{R_2 (Q(s) - A_1 s H_1(s))}{1 + \tau_2 s} \right) \]

\[\frac{1 + \tau_2 s}{\text{Deg}} = \left(1 - A_1 s - \frac{H_1(s)}{Q(s)} \right) \]

\[\frac{H(s)}{Q(s)} = \frac{1}{s A_1} \left(1 - \frac{H \tau_2(s)}{\text{Deg}} \right) = \frac{1}{A_1 s} \left[\text{Deg} - 1 - \tau_2 s \right] \]

\[\frac{H(s)}{Q(s)} = \frac{1}{s A_1} \left(\frac{\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2 + A_1 R_2) s + 1 - 1 - \tau_2 s}{\text{Deg}} \right) \]

\[\frac{H(s)}{Q(s)} = \frac{1}{s A_1} \left(\frac{\tau_1 \tau_2 s + \tau_1 + A_1 R_2 s}{\text{Deg}} \right) = \]

\[\frac{H(s)}{Q(s)} = \left(\frac{R_2 + R_1 (1 + \tau_2 s)}{\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2 + A_1 R_2) s + 1} \right) \]
Responses

\[\eta_1(t) \]

\[\eta_2(t) \]

\[\eta_3(t) \]

\(\Phi = \frac{\pi}{\sqrt{3}} \Rightarrow \text{system is overdamped}. \)
8.14

\[Y(s) = \frac{2}{s} \frac{(2s + 4)}{(4s^2 + 0.8s + 1)} \]

\[Y(s) = \frac{4}{s} \frac{(s + 2)}{(4s^2 + 0.8s + 1)} \]

\[Y(s) = 4 \left(1 + \frac{2}{s} \right) \frac{1}{(4s^2 + 0.8s + 1)} \]

\[Y(s) = \frac{8}{s(4s^2 + 0.8s + 1)} + \frac{4}{(4s^2 + 0.8s + 1)} \]

\[= (\text{step response}) + (\text{impulse response}) \]

Now, \(\tau = \sqrt{4} = 2; 2\xi \tau = 0.8 \)

\(\xi = 0.2 \)

also, \(\frac{t}{\tau} = \frac{4}{2} = 2 \)

impulse response \(\tau Y(t) = 4 \times 0.63 = 2.52 \) (from figure)

step response = \(8 \times 1.15 = 9.2 \) (from figure)

\(Y(4) = 1.26 + 9.2 \)

\(Y(4) = 10.46 \)
Q 9.1. Two tank heating process shown in fig. consist of two identical, well stirred tank in series. A flow of heat can enter tank2. At $t = 0$, the flow rate of heat to tank2 suddenly increased according to a step function to 1000 Btu/min. and the temp of inlet T_i drops from $60^\circ F$ to $52^\circ F$ according to a step function. These changes in heat flow and inlet temp occurs simultaneously.

(a) Develop a block diagram that relates the outlet temp of tank2 to inlet temp of tank1 and flow rate to tank2.

(b) Obtain an expression for $T_2'(s)$

(c) Determine $T_2(2)$ and $T_2(\infty)$

(d) Sketch the response $T_2'(t)$ Vs t.

Initially $T_i = T_1 = T_2 = 60^\circ F$ and $q=0$

$W = 250 \text{ lb/min}$

Hold up volume of each tank = 5 ft3

Density of the fluid = 50 lb/ft3

Heat Capacity = 1 Btu/lb ($^\circ F$)

Solution:

(a) For tank 1
Input – output = accumulation

\[WC(T_i - T_o) - WC(T_1 - T_o) = \rho \ C \ V \ \frac{dT_1}{dt} \] \(1\)

At steady state

\[WC(T_{is} - T_o) - WC(T_{1s} - T_o) = 0 \] \(2\)

\(1\) – \(2\) gives

\[WC(T_i - T_{is}) - WC(T_1 - T_{1s}) = \rho \ C \ V \ \frac{dT_1'}{dt} \]

\[WT_i' - WT_1' = \rho \ V \ \frac{dT_1'}{dt} \]

Taking Laplace transform

\[WT_i(s) = WT_1(s) + \rho \ V \ s \ T_1(s) \]

\[\frac{T_1(s)}{T_i(s)} = \frac{1}{1 + \tau s} \], where \(\tau = \rho \ V \ W\).

From tank 2

\[q + WC(T_1 - T_o) - WC(T_2 - T_o) = \rho \ C \ V \ \frac{dT_2}{dt} \] \(3\)

At steady state

\[q_s + WC(T_{1s} - T_o) - WC(T_{2s} - T_o) = 0 \] \(4\)

\(3\) – \(4\) gives

\[Q' + WC(T_1 - T_{1s}) - WC(T_2 - T_{2s}) = \rho \ C \ V \ \frac{dT_2'}{dt} \]

\[Q' + WCT_1' - WCT_2' = \rho \ C \ V \ \frac{dT_2'}{dt} \]

Taking Laplace transform
Q(s) + WC(T₁(s) - T₂(s)) = ρ CV s T₂(s)

\[T₂(s) = \frac{1}{1 + \frac{\tau}{s}} \left[\frac{Q(s)}{WC} + T₁(s) \right] \], where \(\tau = \rho \frac{V}{W} \).

(b) \(\tau = \frac{50 \times 5}{250} = 1 \text{ min} \)

WC = 250 \times 1 = 250

Ti(s) = -8/s and Q(s) = 1000/s

Now by using above two equations we relate \(T₂ \) and Ti as below and after taking laplace transform we will get \(T₂(t) \)

\[T₂(s) = \frac{1}{1 + \frac{\tau}{s}} \left(\frac{Q(s)}{250} + \frac{1}{(1 + \frac{\tau}{s})^2}T₁(s) \right) \]

\[T₂(s) = \frac{4}{(1+s)} - \frac{8}{(1+s)^2} \]

\[T₂(s) = 4 \left(\frac{1}{s} \right) - \frac{1}{(1+s)} - 8 \left(\frac{1}{s} - \frac{1}{s+1} - \frac{1}{(1+s)^2} \right) \]

\[T₂(t) = (4 + 8\tau)e^{-t} - 4 \]

(c) \(T₂'(2) = -1.29 \)

\[T₂(2) = T₂'(2) + T₂s = 60 - 1.29 = 58.71 \text{°F} \]

\(T₂'(\infty) = -4 \)

\[T₂(\infty) = T₂'(\infty) + T₂s = 60 - 4 = 56 \text{°F} \]
Q – 9.2. The two tank heating process shown in fig. consist of two identical, well stirred tanks in series. At steady state $T_a = T_b = 60^\circ\text{F}$. At $t = 0$, temp of each stream changes according to a step function

$$T_a'(t) = 10\, u(t) \quad T_b'(t) = 20\, u(t)$$

(a) Develop a block diagram that relates T_2', the deviation in the temp of tank2, to T_a' and T_b'.

(b) Obtain an expression for $T_2'(s)$

(c) Determine $T_2(2)$

$W_1 = W_2 = 250\, \text{lb/min}$
$V_1 = V_2 = 10\, \text{ft}^3$
$\rho_1 = \rho_2 = 50\, \text{lb/ft}^3$
$C = 1\, \text{Btu/lb} (\circ\text{F})$
Solution:
(a) For tank 1

\[\frac{T_1(s)}{T_a(s)} = \frac{1}{1 + \tau_1 s}, \]
where \(\tau_1 = \frac{\rho V}{W_1} \).

For tank 2

\[W_1 C(T_1 - T_o) + W_2 C(T_b - T_o) - (W_1 + W_2) C(T_2 - T_o) = \rho C V \frac{dT_2}{dt} \quad ------ (1) \]

At steady state

\[W_1 C(T_{1s} - T_o) + W_2 C(T_{bs} - T_o) - (W_1 + W_2) C(T_{2s} - T_o) = 0 \quad ----- (2) \]

(1) – (2)

\[W_1 T_1' + W_2 T_b' - W_3 T_2' = \rho V \frac{dT_2'}{dt} \]

Taking L.T

\[W_1 T_1(s) + W_2 T_b(s) - W_3 T_2(s) = \rho V s T_2(s) \]
\[T_2(s) = \frac{1}{1 + \frac{\rho}{\tau}} \left[\frac{W_1}{W_3} T_1(s) + \frac{W_2}{W_3} T_b(s) \right] \] where \(\tau = \frac{V}{W_3} \).

(b) \[\tau_1 = \frac{50 \times 10}{250} = 2 \text{ min} \]
\[\tau = \frac{50 \times 5}{250} = 1 \text{ min} \]
\[\frac{W_1}{W_3} = \frac{1}{2} = \frac{W_2}{W_3} \]
\[T_a(s) = 10/s \text{ and } T_b(s) = 0/s \]

Now by using above two equations we relate \(T_1 \) and \(T_a \) as below and after taking laplace transform we will get \(T_2(t) \)
\[
T_2(s) = \frac{1}{2} T_1(s) - \frac{1}{2} T_a(s) \frac{1}{(1 + s)} - \frac{1}{2} T_b(s) \frac{1}{(1 + s)}
\]
\[
T_2(s) = \frac{1}{2} T_a(s) \frac{1}{(1 + s)(1 + 2s)} - \frac{1}{2} T_b(s) \frac{1}{(1 + s)}
\]
\[
T_2(s) = \frac{5}{s(1 + s)(1 + 2s)} - \frac{10}{s(1 + s)}
\]
\[
T_2(s) = \frac{15 + 20s}{s(1 + s)(1 + 2s)}
\]
\[
T_2(s) = \left(\frac{15}{s} - \frac{5}{s + 1} - \frac{20}{(1 + 2s)} \right)
\]
\[
T_2(t) = 15 - 5e^{-t} - 10e^{-\frac{t}{2}}
\]

(c) \(T_2'(2) = 10.64 \degree F \)
\(T_2(2) = T_2'(2) + T_{2s} = 60 + 10.64 = 70.64 \degree F \)

Q – 9.3. Heat transfer equipment shown in fig. consist of two tanks, one nested inside the other. Heat is transferred by convection through the wall of inner tank.

1. Hold up volume of each tank is 1 \(\text{ft}^3 \)
2. The cross sectional area for heat transfer is 1 \(\text{ft}^2 \)
3. The over all heat transfer coefficient for the flow of heat between the tanks is 10 \(\text{Btu} / (\text{hr})(\text{ft}^2)(\degree F) \)
4. Heat capacity of fluid in each tank is 2 \(\text{Btu} / (\text{lb})(\degree F) \)
5. Density of each fluid is 50 \(\text{lb} / \text{ft}^3 \)

Initially the temp of feed stream to the outer tank and the contents of the outer tank are equal to 100 \(\degree F \). Contents of inner tank are initially at 100 \(\degree F \). the flow of heat to the inner tank \((Q) \) changed according to a step change from 0 to 500 \(\text{Btu/hr} \).

(a) Obtain an expression for the laplace transform of the temperature of inner tank \(T(s) \).
(b) Invert \(T(s) \) and obtain \(T \) for \(t= 0,5,10, \infty \)
Solution:

(a) For outer tank

\[WC(T_i - T_o) + hA (T_1 - T_2) - WC(T_2 - T_o) = \rho C V_2 \frac{dT_2}{dt} \] \hspace{1cm} (1)

At steady state

\[WC(T_{is} - T_o) + hA (T_{is} - T_{2s}) - WC(T_{2s} - T_o) = 0 \] \hspace{1cm} (2)

(1) – (2) gives

\[WC(T_{i}') + hA (T_{1} - T_{2}') - WC(T_{2}') = \rho C V_2 \frac{dT_2'}{dt} \]

Substituting numerical values

\[10 T_{i}' + 10 (T_{1}' - T_{2}') - 10 T_{2}' = 50 \frac{dT_2'}{dt} \]

Taking L.T.

\[T_i(s) + T_{1}(s) - 2T_2(s) = 5 s T_2(s) \]

Now \(T_i(s) = 0 \), since there is no change in temp of feed stream to outer tank. Which gives

\[\frac{T_2'(s)}{T_i(s)} = \frac{1}{2 + 5s} \]
For inner tank

\[Q - hA (T_1 - T_2) = \rho C V \frac{dT_1}{dt} \] \hfill (3)

\[Q_s - hA (T_{1s} - T_{2s}) = 0 \] \hfill (4)

(3) – (4) gives

\[Q' - hA (T_1' - T_2') = \rho C V \frac{dT_1'}{dt} \]

Taking L.T and putting numerical values

\[Q(s) - 10 T_1(s) + 10 T_2(s) = 50 s T_1(s) \]

\[Q(s) = \frac{500}{s} \quad \text{and} \quad T_2(s) = \frac{T_1(s)}{(2+5s)} \]

\[\frac{500}{s} - 10T_1(s) + \frac{10T_1(s)}{2+5s} = 50sT_1(s) \]

\[\frac{50}{s} = T_1(s) \left[5s - \frac{1}{2+5s} + 1 \right] \]

\[T_1(s) = \frac{50(2+5s)}{s(25s^2 + 15s + 1)} \]

\[\frac{2(2+5s)}{s(s + 3.82/50)(s + 26.18/50)} \]

\[\frac{100}{s} \left(\frac{94.71}{s + 3.82/50} \right) \left(\frac{5.29}{s + 26.18/50} \right) \]

\[T_1'(t) = 100 - 94.71 e^{-3.82/50} - 5.29 e^{-26.18/50} \]

and

\[T_1(t) = 200 - 94.71 e^{-3.82/50} - 5.29 e^{-26.18/50} \]

For \(t=0,5,10 \) and \(\infty \)

\[T(0) = 100 \, ^\circ \text{F} \]

\[T(5) = 134.975 \, ^\circ \text{F} \]

\[T(10) = 155.856 \, ^\circ \text{F} \]

\[T(\infty) = 200 \, ^\circ \text{F} \]
Q – 10.1. A pneumatic PI controller has an output pressure of 10 psi, when the set point and pen point are together. The set point and pen point are suddenly changed by 0.5 in (i.e. a step change in error is introduced) and the following data are obtained.

<table>
<thead>
<tr>
<th>Time, sec</th>
<th>Psig</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>90</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Determine the actual gain (psig per inch displacement) and the integral time.

Soln:

\[e(s) = -0.5/s \]

for a PI controller

\[Y(s)/e(s) = K_c \left(1 + \frac{1}{\tau_i s} \right) \]

\[Y(s) = -0.5K_c \left(\frac{1}{s} + \frac{1}{\tau_i s} \right) \]

\[Y(t) = -0.5K_c \left(1 + \frac{1}{\tau_i t} \right) \]

At \(t = 0^+ \)

\[y(t) = 8 \Rightarrow Y(t) = 8 - 10 = -2 \]

\[2 = 0.5K_c \]

\[K_c = 4 \text{ psig/in} \]

At \(t = 20 \)

\[y(t) = 7 \Rightarrow Y(t) = 7 - 10 = -3 \]

\[3 = 2 \left(1 + \frac{1}{\tau_i} \right) 20 \]

\[\tau_i = 40 \text{ sec} \]

Q-10.2. A unit-step change in error is introduced into a PID controller. If \(K_C = 10 \), \(\tau_i = 1 \) and \(\tau_D = 0.5 \), plot the response of the controller \(P(t) \)

Soln:

\[P(s)/e(s) = K_c \left(1 + \tau_D s + \frac{1}{\tau_i s} \right) \]

For a step change in error
\[P(s) = (10/s)(1 + 0.5 s + 1/s) \]
\[P(s) = 10/s + 5 + 10/s^2 \]
\[P(t) = 10 + 5 \delta(t) + 10 t \]

Q – 10.3. An ideal PD controller has the transfer function
\[P/e = K_C \left(\tau_D s + 1 \right) \]
An actual PD controller has the transfer function
\[P/e = K_C \left(\tau_D s + 1 \right) / \left((\tau_D/\beta) s + 1 \right) \]
Where \(\beta \) is a large constant in an industrial controller
If a unit-step change in error is introduced into a controller having the second transfer function, show that
\[P(t) = K_C \left(1 + A \exp(-\beta t/\tau_D) \right) \]
Where \(A \) is a function of \(\beta \) which you are to determine. For \(\beta = 5 \) and \(K_C = 0.5 \),
plot \(P(t) \) Vs \(t/\tau_D \). As show that \(\beta \rightarrow \infty \), show that the unit step response approaches that for the ideal controller.

Soln:
\[P/e = K_C \left(\tau_D s + 1 \right) / \left((\tau_D/\beta) s + 1 \right) \]
For a step change, \(e(s) = 1/s \)
\[P(s) = K_C s(\tau_D s + 1) / \left((\tau_D/\beta) s + 1 \right) \]
\[P(t) = K_C \left[1 + \frac{\tau_D \left(\frac{1 - 1}{\beta} \right)}{s + \frac{\tau_D s}{\beta}} \right] \]

\[P(t) = K_C \left[1 + \frac{\tau_D \left(\frac{1 - 1}{\beta} \right) e^{-\beta \tau_D}}{\tau_D \beta} \right] \]

So, \(A = \beta - 1 \)

\[P(t) = 0.5 \left(1 + 4 \exp(-5t/\tau_D) \right) \]

As \(\beta \to \infty \) then \(\tau_D/\beta \to 0 \) and

\[P/e = K_C \left(\tau_D s + 1 \right) / \left(\left(\tau_D/\beta \right) s + 1 \right) \]

becomes

\[P/e = K_C \left(\tau_D s + 1 \right) \]

that of ideal PD controller

Q – 10.4. A PID controller is at steady state with an output pressure of a psig. The set point and pen point are initially together. At time \(t=0 \), the set point is moved away from
the pen point at a rate of 0.5 in/min. the motion of the set point is in the direction of lower readings. If the knob settings are

\[K_C = 2 \text{ psig/in of pen travel} \]
\[\tau_I = 1.25 \text{ min} \]
\[\tau_D = 0.4 \text{ min} \]

Plot output pressure Vs time

Solution:

Given \({\text{de/dt}} = -0.5 \text{ in/min} \)

\[s \ e(s) = -0.5 \]

\[Y(s)/e(s) = K_C \left(1 + \tau_D s + \frac{1}{\tau_I s} \right) \]

\[Y(s) = -\left(\frac{1}{s} + 1/ \tau_I s^2 + \tau_D \right) \]

\[Y(t) = -\left(1 + t/1.25 + 0.4 \delta(t) \right) \]

\[y(t) = 8 - 0.8 \ t - 0.4 \delta(t) \]

Q – 10.5. The input (e) to a PI controller is shown in the fig. Plot the output of the controller if \(K_C = 2 \) and \(\tau_I = 0.5 \text{ min} \)
e(t) = 0.5 (u(t) - u(t-1) - u(t-2) + u(t-3))

e(s) = (0.5/s) (1 - e^{-s} - e^{-2s} + e^{-3s})

P(s)/e(s) = K_c (1 + (1/τI)s) = 2 (1 + 2/s)

P(s) = (1/s + 2/s^2)(1 - e^{-s} - e^{-2s} + e^{-3s})

P(t) =
 = 1 + 2t 0 \leq t < 1
 = 2 1 \leq t < 2
 = 5 - 2t 2 \leq t < 3
 = 0 3 \leq t < \infty

Q - 12.1. Determine the transfer function Y(s)/X(s) for the block diagrams shown.
Wxpress the results in terms of Ga, Gb and Gc
Soln.

(a) Balances at each node

(1) = GaX

(2) = (1) – Y = GaX – Y

(3) = Gb(2) = Gb(GaX – Y)

(4) = (3) + X = Gb(GaX – Y) + X

Y = Gc(4) = Gc(Gb(GaX – Y) + X)

= GaGbGcX – GbGcY + GcX

\[Y = \frac{Gc(GaGb + 1)}{X} = \frac{1}{1 + GbGc} \]

(b) Balances at each node

(1) = X – (4)

(2) = Gb(1) = Gb(X – (4))

(5) = GcX/Ga

(3) = Gc(2) = GbGc(X – (4))

(4) = (3) + (5) 5

= GbGc(X – (4)) + GcX/Ga

Y = Ga(4)

From the fifth equation

(4) = GbGcX – GbGc(4) + GcX/Ga 6

(4) = \(\frac{(GaGbGc + Gc)X}{(1 + GbGc)Ga} \)

From the sixth equation

\[\frac{Y}{X} = \frac{(GaGb + 1)Gc}{1 + GbGc} \]

Q – 12.2

Find the transfer function y(s)/X(s) of the system shown
Soln:

Balance at each node

(1) = X – Y

(2) = (1) + (3)

(3) = G1(2) where G1 = 1/(τ1s + 1)

(4) Y = G2(3) where G2 = 0.5/(τ1s/2 + 1)

From (d) and (c)

Y = (2)G1G2

= G1G2 (X – Y + (3))

Also from (b) and (c)

(3) = G1((1) + (3))

(3)(1 – 1/(τ1s + 1)) = 1/(τ1s + 1)

(3) τ1s = 1

(3) = 1/(τ1s) = (X – Y) / (τ1s)

Substitute this in (e)

\[Y = \frac{0.5}{(τ1s + 1)(τ1s/2 + 1)} \left[1 + \frac{1}{τ1s} \right] (X – Y) \]

\[\frac{Y}{X} = \frac{1}{τ1s^2 + 2τ1s + 1} \]

Q – 12.3. For the control system shown determine the transfer function C(s)/R(s)
Soln.

Balances at each node

\((1) = R - C \) \hspace{2cm} \text{------------------(a)}
\((2) = 2 \times (1) = 2(R - C) \) \hspace{2cm} \text{------------------(b)}
\((3) = (2) - (4) = 2(R - C) - (4) \) \hspace{2cm} \text{------------------(c)}
\((4) = (3)/s = (2(R - C) - (4))/s \) \hspace{2cm} \text{------------------(d)}
\((5) = (4) - C \) \hspace{2cm} \text{------------------(e)}
\(C = 2(5) \) \hspace{2cm} \text{------------------(f)}

Solving for (4) using (d)

\[s \times (4) = 2(R - C) - (4) \]
\[(4) = 2(R - C) / (s +1) \]

Using (e)

\[(6) = 2(R - C) / (s +1) - C \]
\[C = 2 \times \left[\frac{2}{s+1} (R - C) - C \right] \]
\[4R = C((s +1) + 4 + 2(s +1)) \]
\[\frac{C}{R} = \frac{4}{3s + 7} \]

Q – 12.4. Derive the transfer function \(Y/X \) for the control system shown
Solving for the balance at each node:

(1) = (5) + X -------------------(a)
(2) = (1) – (4) -------------------(b)
(3) = (2)/s -------------------(c)

Y = (3)/s -------------------(d)
(5) = 2 (3) -------------------(e)
(4) = 25Y -------------------(f)

From (b)

(4) = (1) – (2)
 = (1) – s (3) from (c)
 = (1) – s^2 Y from (d)
 = (5) + X - s^2 Y from (a)
 = 2 (3) + X - s^2 Y from (e)
 = 2 s Y + X - s^2 Y

From (f)

Y = (2 s Y + X - s^2 Y)/25
X = Y(25 – 2s + s^2)

\[
\frac{Y}{X} = \frac{1}{s^2 - 2s + 25}
\]
13.1 The set point of the control system in fig P13.1 given a step change of 0.1 unit. Determine
(a) The maximum value of C and the time at which it occurs.
(b) the offset
(c) the period of oscillation.

Draw a sketch of $C(t)$ as a function of time.

\[C = \frac{5}{(s+1)(2s+1)} \left[1 + K \frac{5}{(s+1)(2s+1)} \right] \]

\[\frac{C}{R} = \frac{8}{2s^2 + 3s + 9} \]

\[R = \frac{0.1}{s} \]

b) \(C(\infty) = \lim_{s \to 0} \frac{0.8}{2s^2 + 3s + 9} = \frac{0.8}{9} = 0.0889 \)

offset = 0.0111

c) \(K = \frac{0.8}{9}; \tau = \frac{\sqrt{2}}{3}; 2\xi \tau = \frac{1}{3} \Rightarrow \xi = \frac{1}{2\sqrt{2}} \)
overshoot = \exp\left(-\frac{\pi \xi}{\sqrt{1-\xi^2}}\right) = 0.305

= Maximum value of \(C \) = 1.0305*0.0889=0.116

Maximum value of \(C \) = 0.116

\[
0.116 = \frac{0.8}{9} \left(1 - \frac{1}{\sqrt{1-\xi^2}} e^{-\frac{\pi}{\xi} \sin \left[\sqrt{1-\xi^2} \frac{t}{\tau} + \tan^{-1}\left(\frac{\sqrt{1-\xi^2}}{\xi}\right)\right]}\right)
\]

\[
t = \frac{\tau}{\sqrt{1-\xi^2}} \tan^{-1}\frac{\sqrt{1-\xi^2}}{\xi} = 1.6
\]

Time at which \(C_{\text{max}} \) occurs = 1.6

(c) Period of oscillation is \(T = \frac{2\pi \tau}{\sqrt{1-\xi^2}} = 3.166 \)

\(T = 3.166 \)

Decay ratio = (overshoot)^2 = 0.093
13.2 The control system shown in fig P 13.2 contains three-mode controller.
(a) For the closed loop, develop formulas for the natural period of oscillation τ and the damping factor ξ in terms of the parameters K, τ_D, τ_I and τ_i.
(b) Calculate ξ when K is 0.5 and when K is 2.
(c) Do ξ & τ approach limiting values as K increases, and if so, what are these values?
(d) Determine the offset for a unit step change in load if K is 2.
(e) Sketch the response curve (C vs t) for a unit-step change in load when k is 0.5 and when K is 2.
(f) In both cases of part (e) determine the max value of C and the time at which it occurs.

\[
\frac{C}{R} = \frac{1}{\tau_i s + 1} \left(\frac{k}{1 + \tau_D s + \frac{1}{\tau_i s}} \right)
\]
\[
\frac{C}{U} = \frac{1}{(\tau_i s + 1)} \left(\frac{k}{1 + \tau_D s + \frac{1}{\tau_i s}} \right)
\]
\[
= \frac{\tau_i s}{k} \left(\tau_i \tau_D + \frac{\tau_i \tau_I}{k} \right) \frac{1}{(\tau_i s + 1)^2} + \left(\frac{k + 1}{k} \right) \tau_i s + 1
\]
\[
\frac{C}{R} = \frac{k}{\tau_i s + 1 + k \left(1 + \tau_D s + \frac{1}{\tau_i s} \right)}
\]
\[C = \frac{k(\tau_D \tau_I s^2 + \tau_I s + 1)}{(k \tau_D + \tau_I s^2 + (k + 1) \tau_I s + k)} \]

\[\tau^2 = \frac{\tau_I (k \tau_D + \tau_I)}{k}, 2 \pi \xi = \frac{(k + 1) \tau_I}{k} \]

\[= 2 \sqrt{\frac{\tau_I (k \tau_D + \tau_I)}{k}} \xi = \frac{(k + 1) \tau_I}{k} \]

\[= \xi = \frac{(k + 1)}{2} \sqrt{\frac{\tau_I}{k(k \tau_D + \tau_I)}} \]

\[T = \frac{2 \tau \pi}{1 - \xi^2} = \frac{2 \pi \sqrt{\tau_I (k \tau_D + \tau_I)}}{k} \sqrt{\frac{4k(k \tau_D + \tau_I) - (k + 1)^2 \tau_D}{2k(k \tau_D + \tau_I)}} \]

\[T = \frac{4 \pi (k \tau_D + \tau_I)}{\sqrt{4k}} \left(\frac{k \tau_D}{\tau_I} + \left(\frac{\tau_I}{\tau_I} \right) \right) - (k + 1)^2 \]

B) \(\tau_D = \tau_I = 1; \tau_I = 2 \)

For \(k = 0.5 \); \(\xi = 0.75 \) \(\frac{1}{\sqrt{0.5(2.5)}} = 0.671 \)

For \(k = 2 \); \(\xi = 1.5 \) \(\sqrt{\frac{1}{2 \times 3}} = 0.530 \)

C) \(\xi = \frac{1}{2} \sqrt{\frac{(k + 1)^2 \tau_I}{k(k \tau_D + \tau_I)}} = \frac{1}{2} \sqrt{\left(\frac{\tau_I}{(k \tau_D + \tau_I)} \right)^2} \]
As $k \to \infty$, $\xi = \frac{1}{2} \sqrt{\frac{\tau_f}{\tau_i}} = 0.3535$

$$T = \frac{4\pi (k\tau_D + \tau_f)}{\sqrt{4k \left(k \left(\frac{\tau_D}{\tau_i} \right) + \left(\frac{\tau_f}{\tau_i} \right) \right)} - (k + 1)^2}$$

$$\tau = \sqrt{\frac{k \tau_f \tau_D + \tau_f \tau_i}{k}}$$

$$\tau = \sqrt{\frac{\tau_f \tau_D + \tau_f \tau_i}{k}}$$

$$\tau|_{k \to \infty} = \sqrt{\frac{\tau_f \tau_D}{k}} = 1$$

As $k \to \infty$, $T = \frac{4\pi \tau_D}{\sqrt{4 \tau_D - 1}} = 7.2552$

$$U = \frac{1}{\tau_i s + 1}$$

$$\frac{C}{U} = \frac{\tau_f s}{(k + 1)\tau_f s + (\tau_f + k\tau_D)\tau_f s^2 + k}$$

$$U = \frac{1}{s}$$

$$\frac{C}{U} = \frac{\tau_f}{(k + 1)\tau_f s + (\tau_f + k\tau_D)\tau_f s^2 + k}$$

$$\lim_{{s \to 0}} sf(s) = \frac{0}{k} = 0$$
For a unit step change in U

$C(\infty) = 0$

Offset = 0

(e) $k = 0.5, \xi = 0.671$ & $\tau = 2.236$

$$T = \frac{2\pi\tau}{\sqrt{1-\xi^2}} = 18.95$$

If $k = 0.5$

$$\frac{C}{U} = \frac{2s}{5s^2 + 3s + 1}; \quad \frac{C}{s} = \frac{s}{5s^2 + 3s + 1}$$

If $k = 2$

$$\frac{C}{U} = \frac{0.5s}{2s^2 + 1.5s + 1}; \quad \frac{C}{s} = \frac{0.5}{2s^2 + 1.5s + 1}$$

In general $C(t) = \frac{1}{\tau} \frac{1}{\sqrt{1-\xi^2}} e^{\frac{-\xi}{\tau}} \sin \sqrt{1-\xi^2} \frac{t}{\tau}$

The maximum occurs at $t = \frac{\tau}{\sqrt{1-\xi^2}} \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi}$

If $k = 0.5 \ t_{max} = 2.52 \ C_{max} = 0.42$

If $k = 2 \ t_{max} = 1.69 \ C_{max} = 0.19$
13.3 The location of a load change in a control loop may affect the system response. In the block diagram shown in fig P 13.3, a unit step change in load enters at either location 1 and location 2.

(a) What is the frequency of the transient response when the load enters at location Z?

(b) What is the offset when the load enters at 1 & when it enters at 2?

(c) Sketch the transient response to a step change in U_1 and to a step change in U_2.

\[U_1 = \frac{1}{s}; U_2 = 0 \]

\[(S(R-C)+U_1) \left(\frac{2}{2s+1} \right) \left(\frac{1}{2s+1} \right) = C \]
R = 0

\[
\frac{C}{U_i} = \frac{2}{(2s+1)^2} \times \frac{2}{(2s+1)^2 + 1} = \frac{2}{4s^2 + 4s + 11}
\]

\[
\frac{C}{U_i} = \frac{2}{4s^2 + 4s + 11}
\]

\[
K = \frac{2}{\sqrt{11}}; \tau = \frac{2}{\sqrt{11}}; 2\xi\tau = \frac{4}{11} \Rightarrow \xi = \frac{1}{\sqrt{11}}
\]

Frequency = \[
\frac{1}{T} = \frac{1}{2\pi} \sqrt{1 - \xi^2} = \frac{1}{2\pi} \frac{\sqrt{10}}{2} = 0.2516
\]

C(\infty) = 2/11
Offset = 2/11 = 0.182

U_1 = 0; U_2 = 1/s

\[
\Rightarrow \left(5 \times \frac{2}{2s+1} (R - C) + U_2 \right) \left(\frac{1}{2s+1}\right) = C
\]

R = 0
\[\Rightarrow \frac{C}{U_2} = \frac{1}{\frac{2s+1}{2s+1} \times 1 + 1} \]

\[\frac{C}{U_2} = \frac{2s+1}{4s^2 + 4s + 11} \]

\[C(\infty) = \frac{1}{11} \]

Offset = 1/11 = 0.091

a) if \(U_1 = \frac{1}{s} \); frequency = 0.2516

if \(U_2 = \frac{1}{s} \); frequency = 0.2516

b) if \(U_1 = \frac{1}{s} \); frequency = 0.182

if \(U_2 = \frac{1}{s} \); frequency = 0.091
13.5 A PD controller is used in a control system having first order process and a measurement lag as shown in Fig P13.5.

(a) Find the expressions for ξ and τ for the closed–loop response.

(b) If $\tau_1 = 1$ min, $\tau_m = 10$ sec, find K_C so that $\xi = 0.7$ for the two cases: (1) $\tau_D = 0$, (2) $\tau_D = 3$ sec,

(c) Compare the offset and period realized for both cases, and comment on the advantage of adding derivative mode.

\[
a) \quad \frac{C}{R} = \frac{K_C (1 + \tau_D s)}{(\tau_i s + 1)} \cdot \frac{1}{1 + \frac{K_C (1 + \tau_D s)}{(\tau_i s + 1)(\tau_m s + 1)}}
\]
\[C = \frac{K_c (1 + \tau_d s)(1 + \tau_m s)}{\tau_1 \tau_m s^2 + (\tau_1 + \tau_m + K_c \tau_d) s + (K_c + 1)} \]

\[= \tau^2 = \frac{\tau_1 \tau_m}{K_c + 1} \]

\[\tau = \sqrt{\frac{\tau_1 \tau_m}{K_c + 1}} \]

\[\xi = \frac{1}{2} \frac{\tau_1 + \tau_m + k_c \tau_d}{\sqrt{\tau_1 \tau_m (k_c + 1)}} \]

b) \(\tau_1 = 1 \text{ min}; \tau_m = 10 \text{ s}; \xi = 0.7 \)

\[\tau_d = 0 \]

1) \(0.7 = \frac{1}{2} \times \frac{70}{\sqrt{600(k_c + 1)}} \)

\(k_c = 3.167 \)

\[\tau_d = 3 \text{ s} \]

2) \(0.7 = \frac{1}{2} \times \frac{70 + 3k_c}{\sqrt{600(k_c + 1)}} \)

\(k_c = 5.255 \)

c) for \(R = \frac{1}{s}; c(\infty) = \frac{k_c}{k_c + 1} \)
For $\tau_D = 0; C(\infty) = 0.76; offset = 0.24$

For $\tau_D = 3s; C(\infty) = 0.84; offset = 0.16$

$$\text{period} = \frac{2\pi \sqrt{\frac{600}{4.167}}}{\sqrt{1-\xi^2}} = 105.57 = \text{period}$$

$$\text{period} = \frac{2\pi \sqrt{\frac{600}{6.255}}}{\sqrt{1-(0.7)^2}} = 86.17s = \text{period}$$

Comments:

Advantage of adding derivative mode is lesser offset lesser period

13.6 The thermal system shown in fig P 13.6 is controlled by PD controller.

Data: $w = 250 \text{ lb/min}; \rho = 62.5 \text{ lb/ft}^3$;

$V_1 = 4 \text{ ft}^3, V_2 = 5 \text{ ft}^3, V_3 = 6 \text{ ft}^3$;

$C = 1 \text{ Btu/(lb)(} ^\circ\text{F})$

Change of 1 psi from the controller changes the flow rate of heat of by 500 Btu/min. the temperature of the inlet stream may vary. There is no lag in the measuring element.

(a) Draw a block diagram of the control system with the appropriate transfer function in each block. Each transfer function should contain a numerical values of the parameters.

(b) From the block diagram, determine the overall transfer function relating the temperature in tank 3 to a change in set point.

(c) Find the offset for a unit step change in inlet temperature if the controller gain K_C is 3 psi/°F of temperature error and the derivative time is 0.5 min.
\[WT_0 C + q = \rho CV_i (T_i - T_0) + WT_1 C \]
\[WT_1 C = \rho CV_i (T_1 - T_0) + WT_2 C \]
\[WT_2 C = \rho CV_i (T_2 - T_0) + WT_3 C \]
\[T_0 (WC + \rho CV_i) + q = T_1 (W C + \rho CV_i) \]

\[T_1 = T_0 + \frac{q}{WC + \rho CV_i} \]

\[T_1 = T_2 = T_3 \]

\[T_3 = T_0 + \frac{q}{WC + \rho CV_i} \Rightarrow T_3(s) = \frac{q(s)}{(WC + \rho CV_i)s} \]

\[T_3'(s) = \frac{R(s)}{k_c(1 + \tau_D s)} \frac{2}{(s + 1)(1.25s + 1)(1.5s + 1)} \]

\[= \frac{2k_c(1 + \tau_D s)}{(s + 1)(1.875s^2 + 2.75s + 1) + 2k_c(1 + \tau_D s)} \]

\[\frac{T_3'(s)}{R(s)} = \frac{2k_c(1 + \tau_D s)}{1.875s^3 + 4.625s^2 + (3.75 + 2k_c\tau_D)s + 2k_c + 1} \]
c) $k_C = 3; \tau_D = 0.5, offset = ?, \tau_o(s) = \frac{1}{s}$

\[
\frac{T_i'(s)}{T_i'(s) \left(s - 10 \right) \left(1.875s^3 + 4.625s^2 + (3.75 + 2k_C\tau_D)s + 2k_C + 1 \right)} = \frac{1}{2k_C + 1} = \frac{1}{7} = 0.143
\]

Offset = 0.143

13.7 (a) For the control system shown in fig P 13.7, obtain the closed loop transfer function C/U.

(b) Find the value of K_C for which the closed loop response has a ζ of 2.3.

(c) Find the offset for a unit-step change in U if $K_C = 4$.

\[
\left(K_C \times \frac{s + 1}{0.25s + 1}(R - C) + U \right) \frac{1}{s} = C
\]

\[
\frac{C}{U} = \frac{1}{s + \frac{K_C}{s} \cdot \frac{s + 1}{0.25s + 1}}
\]
\[
\frac{C}{U} = \frac{0.25s + 1}{0.25s^2 + s + K_c(s + 1)}
\]

\[
\frac{C}{U} = \frac{s + 4}{s^2 + 4(K_c + 1)s + 4K_c}
\]

b) \(\xi = 2.3 \)

\[
\tau = \frac{1}{\sqrt{4K_c}} ; 2\xi\tau = \frac{K_c + 1}{K_c}
\]

\[
= \frac{1}{\sqrt{4K_c}} \times 2 \times 2.3 = \frac{K_c + 1}{K_c}
\]

\[
= \frac{K_c + 1}{\sqrt{K_c}} = 2.3
\]

\[K_c = 2.952\]

C) \(K_c = 4, U = 1/s \)

\[
= C = \frac{1}{s} \times \frac{s + 4}{s^2 + 20s + 16}
\]

\[C(\infty) = \frac{1}{4}\]

offset = 0.25.

13.8 For control system shown in Fig 13.8
(a) \(C(s)/R(s) \)
(b) \(C(\infty) \)
(c) Offset
(d) \(C(0.5) \)
(e) Whether the closed loop response is oscillatory.
(a) \(\frac{C}{R} = \frac{4}{s(s+1)} \)

\[\frac{C}{R} = \frac{4}{s^2 + s + 4} \]

b) \(C(\infty) = 2*1 = 2 \)

\(C(\infty) = 2 \)

C) offset = 0

d) \(\tau = \frac{1}{2} ; 2\xi \tau = \frac{1}{4} \Rightarrow \xi = \frac{1}{4} \)

\[\frac{C(t)}{2} = 1 - \frac{1}{\sqrt{1-\left(\frac{1}{4}\right)}} e^{-\frac{t}{\tau}} \sin \left[\frac{\sqrt{15}}{4} \frac{t}{\tau} + \tan^{-1} \sqrt{15} \right] \]

\[= C(0.5) = 2 \left[1 - \frac{4}{\sqrt{15}} e^{-\frac{1}{4}} \sin \left[\frac{\sqrt{15}}{4} \frac{1}{\tau} + \tan^{-1} \sqrt{15} \right] \right] \]

\(C(0.5) = 0.786 \)

e) \(\xi < 1 \), the response is oscillatory.

13.9 For the control system shown in fig P13.9, determine an expression for \(C(t) \)
if a unit step change occurs in R. Sketch the response $C(t)$ and compute $C(2)$.

$$\frac{C}{R} = \frac{1 + \frac{1}{s}}{1 + \left(1 + \frac{1}{s}\right)}$$

$$\frac{C}{R} = \frac{s + 1}{2s + 1}$$

$R = \frac{1}{s}$

$$C = \frac{s + 1}{s(2s + 1)} = \frac{1}{s} + \frac{-1}{2s + 1}$$

$$C(t) = 1 - \frac{1}{2} e^{-\frac{t}{2}}$$

$C(2) = 0.816$

13.10 Compare the responses to a unit-step change in a set point for the system shown in fig P13.10 for both negative feedback and positive feedback. Do this for K_C of 0.5 and 1.0. Compare the responses by sketching $C(t)$.
-ve feedback:

\[
C = \frac{K_C}{s(s + (K_C + 1))}
\]

+ve feedback

\[
\frac{C}{R} = \frac{K_C \times \frac{1}{s + 1}}{1 - K_C \frac{1}{s + 1}}
\]

\[
C = \frac{K_C}{s(s + (1 - K_C))}
\]

For \(K_C = 0.5 \), response of -ve feedback is

\[
C = \frac{1}{s(2s + 3)} = \frac{1}{3} + \frac{-2}{3}
\]

\[
C(t) = \frac{1}{3} - \frac{1}{3}e^{-\frac{3t}{2}} = \frac{1}{3}(1 - e^{-\frac{3t}{2}})
\]

response of +ve feedback is
For $K_c = 1$, response of -ve feed back is

$$C(t) = 1 - e^{-\frac{t}{2}}$$

response of +ve feedback is

$$C(t) = \frac{1}{2} - \frac{1}{2} e^{-2t}$$

14.1 Write the characteristics equation and construct Routh array for the control system shown. It is stable for (i) $K_c = 9.5$; (ii) $K_c = 11$; (iii) $K_c = 12$
\[
1 + \frac{6Kc}{(s + 1)(s + 2)(s + 3)} = 0
\]

or \((s + 1)(s + 2)(s + 3) + 6Kc = 0\)

\[(s^3 + 6s + 11s + (6 + 6Kc) = 0\]

\[s^3 + 6s^2 + 11s + (6 + 6Kc) = 0\]

Routh array

\[
\begin{array}{ccc}
 s^3 & 1 & 11 \\
 s^2 & 6 & (6 + 6Kc) \\
 s & 6(1 + Kc) \\
\end{array}
\]

For \(Kc = 9.5\)

\[= 10^{-(Kc)} = 10^{-9.5} = 0.5 > 0\] therefore stable.

For \(Kc = 11\)

\[= 10^{-(Kc)} = 10^{-11} = -1 < 0\] therefore unstable

For \(Kc = 121\)

\[= 10^{-(Kc)} = 10^{-12} = -2 < 0\] therefore unstable

14.2 By means of the routh test, determine the stability of the system shown when \(K_C = 2\).

Characteristic equation

\[
1 + 2\left(1 + \frac{3}{s}\right)2\left(\frac{10}{2s^2 + 4s + 10}\right) = 0
\]
(2s^2 + 4s +10)s + 2(s +3) . 2 .10 = 0
2s^3 + 4s^2 + 10s + 40s + 120 = 0
2s^3 + 4s^2 + 50s + 120 = 0
s^3 + 2s^2 + 25s + 60 = 0

Routh Array

\[
\begin{array}{c|c}
1 & 25 \\
2 & 60 \\
-10/2
\end{array}
\]

The system is unstable at Kc = 2.

14.4 Prove that if one or more of the co-efficient \((a_0, a_1, \ldots, a_n)\) of the characteristic equation are negative or zero, then there is necessarily an unstable root

Characteristic equation :

\[a_0 x^n + a_1 x^{n-1} + \ldots + a_n = 0\]

\[a_0 (x^n + a_1/a_0 x^{n-1} + \ldots + a_n/a_0) = 0\]

\[a_0 (x - \alpha_1)(x - \alpha_2) \ldots (x - \alpha_n) = 0\]

We have \(\alpha_1, \alpha_2, \ldots, \alpha_n < 0\)

As we know the second co-efficient \(a_1/a_0\) is sum of all the roots

\[
\frac{a_1}{a_0} = (-1)^2 \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \right] / 2
\]

Therefore sum of all possible products of two roots will happen twice as \(\alpha_i \alpha_j\) dividing the total by 2.

\(\alpha_i \alpha_j > 0 \) (\(\alpha_i < 0 \) \(\alpha_j < 0\))

And

\[
\therefore \frac{a_2}{a_0} > 0 \Rightarrow a_2 > 0
\]

Similarly
\[
\frac{a_j}{a_0} = (-1)^j \text{ (sum of all possible products of } j \text{ roots)}
\]

if \(j = \text{even} \) \((-1)^j = 1 \text{ and the sum is } > 0 \) so \(\frac{a_j}{a_0} > 0 \)

if \(j = \text{odd} \) \((-1)^j = -1 \text{ and the sum is } < 0 \) so \(\frac{a_j}{a_0} \) is again \(> 0 \)

in both case \(a_j/a_0 > 0 \)

so \(a_j > 0 \) (for \(j = 1, \ldots, n \))

14.5 Prove that the converse statement of the problem 14.4 that an unstable root implies that one or more co-efficient will be negative or zero is untrue for all co-efficient ,\(n > 2 \).

Let the converse be true, always .Never if we give a counter example we can contradict.
Routh array

\[
\begin{array}{cccc}
\text{s}^3 & s^2 & 2s & 3 \\
1 & 2 \\
1 & 3 \\
-1 & 0 \\
0 & \\
\end{array}
\]

System is unstable even when all the coefficient are greater than 0; hence a contradiction.

14.6 Deduce an expression for Routh criterion that will detect the Presence of roots with real parts greater than \(\sigma \) for any rectified \(\sigma > 0 \)

Characteristic equation

\[
a_0x^n + a_1x^{n-1} + \ldots + a_n = 0
\]

Routh criteria determines if for any root, real part > 0.

Now if we replace \(x \) by \(X \) such that
Characteristic equation becomes

\[a_0 (X - \sigma)^n + a_1 (X - \sigma)^{n-1} + \ldots + a_n = 0 \]

Hence if we apply Routh criteria,

We will actually be looking for roots with real part \(> \sigma \) rather than \(> 0 \)

\[a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n = 0 \]

Routh criterion detects if any root \(\alpha_j \) is greater than zero.

Is there any \(x = \alpha_1, \alpha_2, \ldots, \alpha_j, \ldots, \alpha_n > 0 \) \(\quad \ldots \quad (1) \)

Now we want to detect any root

\(\alpha_j > -\sigma \)

\(\alpha_j > 0 \)

\(From(1) \)
\(x = \alpha_1, \alpha_2, \ldots, \alpha_j, \ldots, \alpha_n, > 0 \)

implies is there any
\[
\begin{align*}
x &= \alpha_1 > 0 \\
x &= \alpha_2 > 0 \\
& \quad \vdots \\
x &= \alpha_j > 0 \\
& \quad \vdots \\
x &= \alpha_n > 0 \\
\end{align*}
\]

add \(\sigma \) on both sides
is there any
\[
\begin{align*}
x + \sigma &= \alpha_1 + \sigma > 0 \\
x + \sigma &= \alpha_2 + \sigma > 0 \\
& \quad \vdots \\
x + \sigma &= \alpha_j + \sigma > 0 \\
& \quad \vdots \\
x + \sigma &= \alpha_n + \sigma > 0 \\
\end{align*}
\]

so, Let \(X = x + \sigma \)
and apply Routh criteria to detect any \(\alpha_j + \sigma > 0 \) or \(\alpha_j > -\sigma \)

14.7 Show that any complex no \(S_1 \) satisfying \(|S| < 1\), yields a value of

\[
Z = \frac{1 + s}{1 - s} \text{ that satisfies Re}(Z) > 0,
\]
Let \(S = x + iy, \sqrt{x^2 + y^2} < 1 \)
\[Z = \frac{1 + s}{1 - s} \]
\[
\frac{(1+x) + iy (1-x) + iy}{(1-x) - iy (1-x) + iy} \frac{(1-x^2 + (1=x+1-x)i)y-y^2}{1+x^2-2x+y^2} = \frac{1-(x^2+y^2) + 2i y}{1-2x+(x^2+y^2)}
\]

\[\text{Re}(Z) = \frac{1-(x^2+y^2)}{1-2x+(x^2+y^2)}\]

\text{if} \quad \text{Re}(z) > 0 \quad \text{then} \quad 1-(x^2+y^2) > 0 \quad \text{and} \quad 1-2x+(x^2+y^2) > 0

\text{we have} \quad \sqrt{x^2+y^2} < 1 \quad x^2+y^2 < 1

\text{Ranges are} \quad -1 < x < 1 \quad \text{Points in the unit circle}

1-(x^2+y^2) > 0 \quad \text{is true therefore} \quad x^2+y^2 < 1

Now
\[1+(x^2+y^2)-2x\]

\text{if} \quad x = -1 \& y = 0 \quad \text{then it is} \quad 4
\text{if} \quad x = 1 \& y = 0 \quad \text{then it is} \quad 0

0 < (1+(x^2+y^2)-2x) < 4

\text{Re}(z) > 0

\text{example:}
\text{if} \quad s = (0.5+i0.5) \quad \text{the system is unstable due to the real part}

\[L^{-1}\left[\frac{1}{s-(0.5+i0.5)}\right]\]
\[L^{-1} \left[\frac{1}{s - (0.5 + i0.5)} \right] = e^{0.5t} (\cos 0.5t + \sin 0.5t) \]

14.8 For the output C to be stable, we analyze the characteristic equation of the system

\[1 + \frac{1}{\tau_j s (\tau_1 s + 1)(\tau_2 s + 1)} \times (\tau_3 s + 1) = 0 \]

\[\tau_j s (\tau_1 s^2 + \tau_2 s + \tau_3 s + 1) + \tau_3 s + 1 = 0 \]

\[\tau_j \tau_1 \tau_2 s^3 + \tau_j (\tau_1 + \tau_2) s^2 + (\tau_j + \tau_3) s + 1 = 0 \]

Routh Array

\[
\begin{array}{ccc}
 s^3 & \tau_j \tau_1 \tau_2 & \tau_j + \tau_3 \\
 s^2 & \tau_j (\tau_1 + \tau_2) & 1 \\
 s^1 & \alpha & 0 \\
 s^0 & 1 & \\
\end{array}
\]

\[\alpha = \frac{\tau_j (\tau_1 + \tau_2)(\tau_2 + \tau_3) - \tau_j \tau_1 \tau_2}{\tau_j (\tau_1 + \tau_2)} \]

Now

1. \(\tau_j \tau_2 \tau_1 > 0 \)

Since \(\tau_1 \) & \(\tau_2 \) are process time constant they are definitely +ve

\(\tau_1 > 0; \tau_2 > 0 \)

2. \(\tau_j (\tau_1 + \tau_2) > 0 \)

3. \(\alpha > 0 \Rightarrow \tau_j (\tau_1 + \tau_2)(\tau_2 + \tau_3) > \tau_j \tau_1 \tau_2 \)
\[\tau_i \tau_j + \tau_i \tau_3 + \tau_2 \tau_3 + \tau_2 \tau_3 - \tau_1 \tau_2 > 0 \]

\[\tau_j (\tau_1 + \tau_2) > \tau_1 \tau_2 - \tau_3 (\tau_1 + \tau_2) \]

\[\tau_j > \frac{\tau_1 \tau_2}{\tau_1 + \tau_2} - \tau_3 \]

also \ \tau_j > 0

14.9 In the control system shown in fig find the value of Kc for which the system is on the verge of the instability. The controller is replaced by a PD controller, for which the transfer function is Kc(1+s). If Kc = 10, determine the range for which the system is stable.

Characteristics equation

\[1 + \frac{6Kc}{(s+1)(s+2)(s+3)} = 0 \]

or \ (s+1)(s+2)(s+3) + 6Kc = 0
\((s^2 + 3s + 2)(s+3) + 6Kc = 0 \)
\(s^3 + 6s^2 + 11s + (6 + 6Kc) = 0 \)

Routh array

\[
\begin{array}{ccc}
 s^3 & 1 & 3 \\
 s^2 & 3 & 1 + Kc \\
 s & 3 & \left(\frac{1 + Kc}{3} \right) \\
\end{array}
\]
For verge of instability:

\[3 = \left(\frac{1 + K_c}{3} \right) \]

\[K_c = 8 \]

Characteristics equation

\[1 + \frac{10(1 + kcs)}{(s + 1)^3} = 0 \]

\[s^3 + 3s^2 + s(3 + 10Kcs) + 11 = 0 \]

Routh Array

\[
\begin{array}{ccc}
 s^3 & 1 & 3 + 10\tau_D \\
 s^2 & 3 & 11 \\
 s & & \\
 3(3 + 10\tau_s) & > 11 & \text{for vege} \\
 30\tau_s & > 2 \\
 \tau_D & > 2/30 \\
\end{array}
\]

14.10 (a) Write the characteristics equation for the central system shown.
(b) Use the routh criteria to determine if the system is stable for \(K_c = 4 \)
© Determine the ultimate value of \(K_c \) for which the system is unstable.

(a) characteristics equation
1 + kc \left(\frac{s + 2}{3} \right) \left(\frac{1}{2s + 1} \right) \frac{1}{s + 1} = 0

(s^2 + s)(2s + 1) + kc(s + 2) = 0

2s^3 + 3s^2 + (1 + kc)s + 2kc = 0

s^3 + 3s^2 + 3s + (1 + kc) = 0

\textbf{Kc=4 Routh array}

\begin{array}{ccc}
s^3 & 2 & 5 \\
s^2 & 3 & 8 \\
s & -1/3 & \\
\end{array}

\textbf{not stable}

\frac{3(1 + kc) - 4kc}{3} = 0

3 - Kc = 0; Kc = 3

\textbf{For verge of instability}

14.11 for the control shown, the characteristics equation is

\(s^4 + 4s^3 + 6s^2 + 4s + (1 + k) = 0 \)

(a) determine value of \(k \) above which the system is unstable.

(b) Determine the value of \(k \) for which the two of the roots are on the imaginary axis, and determine the values of these imaginary roots and remaining roots are real.

\(s^4 + 4s^3 + 6s^2 + 4s + (1 + k) = 0 \)
\[s^4 + 1 \quad 6(1+k) \]
\[s^3 + 4 \quad 4 \]
\[s^2 + 5 \quad 1+k \]
\[s \quad 4 - \frac{4}{5}(1+k) \]
\[1 \quad 1+k \]

For the system to be unstable

\[4\left(1 - \frac{1+k}{5}\right) < 0 \]

\[1 < \frac{1+k}{5} \]

\[k > 4 \]
\[1+k < 0 \]
\[k < -1 \]
\[k > -1 \]

The system is stable at \(-1 < k < 4\)

(b) For two imaginary roots

\[4 = \frac{4}{5}(1+k); k = 4 \]

Value of complex roots

\[5s^2 + 5 = 0 \]
\[s = \pm i \]

\[s^2 + 1 \quad s^4 + 4s^3 + 6s^2 + 4s + 5 \quad s^2 + 4s + 5 \]
\[s^4 + 0 + s^2 \\
4s^3 + 5s^2 \\
4s^3 + 0 + 4s \\
5s^2 + 5 \\
5s^2 + 5 \\
0 \]

SOLUTION:

\[s = \frac{-4 \pm \sqrt{16 - 20}}{2} = \frac{-4 \pm 2i}{2} = -2 \pm i \]

PART 2

LIST OF USEFUL BOOKS FOR PROCESS CONTROL

1. **PROCESS CONTROL BY R.P VYAS, CENTRAL TECHNO PUBLICATIONS, INDIA** (*WIDE VARIETY OF SOLVED PROBLEMS ARE AVAILABLE IN THIS BOOK*)

2. **ADVANCED CONTROL ENGINEERING BY RONALD.S.BURNS**, BUTTERWORTH AND HIENEMANN.

3. **PROCESS MODELLING SIMULATION AND CONTROL FOR CHEMICAL ENGINEERS, WILLIAM.L.LUYNBEN**, MCGRAW HILL.

4. **A MATHEMATICAL INTRODUCTION TO CONTROL THEORY BY SCHOLOMO ENGELBERG**, IMPERIAL COLLEGE PRESS
LIST OF USEFUL WEBSITES

www.msubbu.com FOR BLOCK DIAGRAM REDUCTION AND OTHER CHEMICAL ENGG. LEARNING RESOURCES

Readings,Recitations,Assignments,Exams,StudyMaterials,Discussion Group,Video Lectures now study whatever u want with respect to chemical engg.

http://ocw.mit.edu/OcwWeb/index.htm

**